教科書の単元から資料を探すページです。
数学Bの授業で平均値、分散に関わる問題を扱った際、ある男子生徒から共分散について「sxy=xyの平均-xの平均・yの平均と言えるか」と質問を受けた。本稿では、この質問の内容について考察してみる。※文中の数式は、「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには、「Tosho数式エディタ」が導入されていることが必要です。会員向け無償ダウンロードはこちら
山口県立徳山高等学校 西元教善
相関係数が1に近い2つの対応する変量 x:x1,x2,x3,……,xn, y:y1,y2,y3,……,ynの散布図では,点(xi, yi)(i=1, 2, 3,…,n )は右上がりの直線上あるいはその近くに集中している。相関係数が1に近いとは言えなくても,たとえば 0.5であっても点の分布状態からある直線の近くに点在していることがわかる。では,このような直線 ―散布傾向を表す直線という意味で「散布傾向直線」と呼ぶことにする― をどのように定めるのが妥当であろうか。本稿では,「散布傾向直線」について考察する。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。会員向け無償ダウンロードはこちら→https://ten.tokyo-shoseki.co.jp/login/newenter.php?wurl=/detail/40776/
山口県立高森高等学校 西元教善
「データの分析」で散布図や相関係数を学ぶ。散布図については図から2つのデータの間の相関の有無や相関の強弱の判断を下せることが,相関係数についてはその定義の理解と算出やその値から2つのデータの間の相関の有無や相関の強弱の判断を下せることが要求される。試験では散布図や箱ひげ図等から読み取れるいくつかの文章が提示され,その正誤を答えさせる問題がよく出題される。ただし,生徒にとって興味のあるデータもあればそうでないものもある。本稿ではタイトルにもあるように,楽しく「散布図」と「相関係数」を学習する一例を紹介する。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内
山口県立高森高等学校教諭 西元教善
拙稿『楽しく「散布図」と「相関係数」を学習する~プロ野球セ・パ両リーグの打撃部門の相関関係の比較~』では,2017年度のセ・パ両リーグで規定打席に達したそれぞれ27名の選手の安打,四球,三振,本塁打,打点の5部門について,そのうちの2つの部門の散布図や相関係数を求めて,セ・リーグとパ・リーグを比較してみた。その中で楽しみながら散布図や相関係数の理解を深めることを狙いとしたのであるが,今回は投手部門で考察してみたい。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内
山口県立高森高等学校教諭 西元教善
数学Ⅰのデータの分析で「相関係数」を扱う。それを扱う前までには,1つの変量についての「分散」や「標準偏差」を扱っておき,それを踏まえて2つの変量の「共分散」や「相関係数」を扱う。教科書には「相関係数」は,-1以上1以下の値をとり,正の相関が強いほど1に近づき,また,負の相関が強いほど-1に近づくことについての説明や負の相関が強い状態から正の相関が強い状態までの代表的な散布図が5通りほど載せてあるが,残念なことに相関係数の値がいくらであればそのような判断が下せるかについては記載がない。本稿では,きわめて強い相関があるという r=±1の場合とほとんど相関がないという r=0という場合について,対応する2つの変量x,yの間の関係や散布図を考察してみる。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内
山口県立岩国高等学校教諭 西元教善
教科書で扱ってある例を少し変形することで理解を深める有効な題材とすることができることがある。本稿では,数学Ⅰの最後の例として,東書数学Ⅰに載せてある「相関係数の値を求める」例での値を少し変えて,相関係数と散布図の関係についての理解を深める題材とする。東書数学Ⅰのp.172には5人の生徒の身長と体重を載せた表が与えられ,身長と体重の相関係数rを求める例がある。 r≒0.65という結果になるが,身長と体重の(どちらか一方の)数値を変更してr=1,-1, 0という値になるようにして,データ数は少ないがこの値とその散布図からどのようなことが判断できるかについて考察させる題材にしました。つまり,どのようにデータの数値を変えれば目的の値になるかという「データの改竄(かいざん)」を通じて相関係数と散布図の理解を深めることをねらいとする。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内
山口県立岩国高等学校教諭 西元教善
「(高校数学Ⅰ・A)課題学習指導実践記録集(2014年度版)」東京書籍2014年8月より。数学Ⅰの「データの分析」の単元について、理解を深めるための課題学習を実施した。データの分析の中で扱う「データの相関」をテーマとし、身の回りで相関の強そうな2つの項目を決めて実際にデータを集め、相関係数を求め、結果を考察する活動を行った。グループ学習という形式をとり、データ収集前の段階で結果の予想をさせた。また、データ収集後にクラス内で結果の発表をする時間を設定し、結果(相関係数)について、どのような要因が考えられるのかも議論させた。実際に身の回りの「生のデータ」を集めて考察することと、予想と結果発表の段階でグループ内で「議論」させる活動をさせることで、相関係数の数値が持つ意味の理解を深めることを狙いとした。
京都府立莵道高等学校
「(高校数学Ⅰ・A)課題学習指導実践記録集」東京書籍2013年7月より。陸上十種競技における日本人選手50傑のデータを用い,任意の二種目を選んで,散布図を作り,その傾向を調べ,相関係数を求める。
愛知県立五条高等学校教諭 是澤 佑
大学入試センター試験の後継として導入され、今年で3回目となる大学入学共通テストが去る1月に実施された。数学のみならず、共通テストは「思考力」と「判断力」を問う試験への転換が図られ、複数資料の分析などが特色であると巷間指摘されている。本稿では、今年実施された大学入学共通テストの数学を4回(数学Ⅰ、数学Ⅰ・A、数学Ⅱ、数学Ⅱ・B)にわたり分析・考察してみたい。今回は、数学Ⅰに関する分析・考察である。
山口県立徳山高等学校 西元教善
「よくわかる! 小・中・高 算数・数学のつながり」(2013年10月発行)より。教科書から抜粋した紙面を通して「どの学年で」「どんな内容を」「どのように学んでいるか」が概観できるようになっております。学習内容のつながりや扱いなどの概要の説明,学習段階・学習内容の一覧,学習内容に関する教科書紙面,学習内容に関する留意点(児童,生徒の実態,取り扱い上の配慮)などで構成。
東京書籍(株) 算数・数学編集部
「(高校数学Ⅰ・A)課題学習指導実践記録集」東京書籍2013年7月より。「データの分析」単元はまさしく,単元全体が課題学習そのものではないか。通り一遍の授業で用語や式を教えてから,後で課題学習をするよりも,課題学習と一体化した教材の方が有効だと思う。そこで,プリントを作成して教科書を進めながら随時課題を作成していく形式をとった。
新潟県立新津南高等学校 吉田勉
「よくわかる! 小・中・高 算数・数学のつながり」(2013年10月発行)より。教科書から抜粋した紙面を通して「どの学年で」「どんな内容を」「どのように学んでいるか」が概観できるようになっております。学習内容のつながりや扱いなどの概要の説明,学習段階・学習内容の一覧,学習内容に関する教科書紙面,学習内容に関する留意点(児童,生徒の実態,取り扱い上の配慮)などで構成。
東京書籍(株) 算数・数学編集部
「センター試験『高校数学』過去問題集(2007年6月作成)」より。2006年本試験(数学II・B)第5問[1](1)~(4)[2](1)(2)。この資料全体は,東京書籍「数学B」(2008-2013年度用)の教科書の目次に準拠して,2000年から2007年までのセンター試験問題の小問を分類したものです。この問題は,そのなかの1小問です。データは問題と解答を記載。授業の後,まとめとしての演習問題などでご利用いただけます。
東京書籍(株) 数学編集部
「センター試験『高校数学』過去問題集(2007年6月作成)」より。2007年本試験(数学II・B)第5問。この資料全体は,東京書籍「数学B」(2008-2013年度用)の教科書の目次に準拠して,2000年から2007年までのセンター試験問題の小問を分類したものです。この問題は,そのなかの1小問です。データは問題と解答を記載。授業の後,まとめとしての演習問題などでご利用いただけます。
東京書籍(株) 数学編集部
センター試験数学過去問題集。2009年度本試験(数学ⅡB) 第5問この資料は,東京書籍の数学教科書の目次に準拠して,センター試験問題を分類したものです。データは問題と解答で構成されています。
東京書籍(株) TEN管理課
センター試験数学過去問題集。2009年度追試験(数学ⅡB) 第5問この資料は,東京書籍の数学教科書の目次に準拠して,センター試験問題を分類したものです。データは問題と解答で構成されています。
東京書籍(株) TEN管理課
センター試験数学過去問題集。2010年度本試験(数学ⅡB) 第5問この資料は,東京書籍の数学教科書の目次に準拠して,センター試験問題を分類したものです。データは問題と解答で構成されています。
東京書籍(株) TEN管理課
センター試験数学過去問題集。2011年度本試験(数学ⅡB) 第5問この資料は,東京書籍の数学教科書の目次に準拠して,センター試験問題を分類したものです。データは問題と解答で構成されています。
東京書籍(株) TEN管理課
センター試験数学過去問題集。2012年度本試験(数学ⅡB) 第5問この資料は、東京書籍の数学教科書の目次に準拠して、センター試験問題を分類したものです。データは問題と解答で構成されています。
東書Eネット事務局
センター試験数学過去問題集。2010年度追試験(数学ⅡB) 第5問この資料は、東京書籍の数学教科書の目次に準拠して、センター試験問題を分類したものです。データは問題と解答で構成されています。
東書Eネット事務局
センター試験数学過去問題集。2011年度追試験(数学ⅡB)第5問。この資料は,東京書籍の数学教科書の目次に準拠して,センター試験問題を分類したものです。データは問題と解答で構成されています。
東京書籍(株) 数学編集部
センター試験数学過去問題集。2013年度本試験(数学ⅡB)第5問。この資料は,東京書籍の数学教科書の目次に準拠して,センター試験問題を分類したものです。データは問題と解答で構成されています。
東京書籍(株) 数学編集部