教科書の単元から資料を探すページです。
増減表を使って3次関数の最大値・最小値を求めさせる問題は,①関数はx以外の文字は含まず,定義域は実数全体の場合から,②関数はx以外の文字は含まないが,定義域は端点が文字aなどで表され変化する場合,③定義域は固定されているが,関数はx以外の文字aなどを含む場合へと進展する。①の場合では難なく解けていた生徒が,②では実数全体で増減表を作成して,グラフをかくことはできてもその後どのように場合分けすればよいか,また③では増減表をどのように場合分けして作成すればよいか戸惑う生徒が出てくる。 本稿では,③の場合について生徒にとってわかりやすい増減表作成の指導の一例を示す。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内
山口県立岩国高等学校教諭 西元教善
放物線C0:y=x2の下方にある点P(X,Y)からC0に2本の接線が引けるが,この2本の接線とC0で囲まれる図形の面積SはS=2/3(X2-Y)3/2である。一般に,点P(X,Y)から放物線C:y=x2 +bx+Cに2本の接線が引けるとき,その2本の接線とCで囲まれる図形の面積Sは,F(x,y)=x2 +bx+C -yとおくとき,S=2/3F(x,y)3/2と表せるのであろうか。本稿では,このことについて考察する。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内
山口県立岩国高等学校教諭 西元教善
放物線では,その上にない点から接線が引けないことがあるが,3次曲線では平面上のどの点からでも少なくても1本,多くて3本の接線を引くことができる。ただし,放物線では下(上)に凸のときはその放物線より下(上)にある点からは必ず2本の接線を引くことができる。 本稿では,3次曲線上にない点からちょうど2本の接線が引けるときを考え,そうできるための条件や2つの接点の座標を中心に考察する。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内
山口県立岩国高等学校教諭 西元教善
積分の問題を教えるとき,”ヴィジュアルな思考”と”実感として分かること”に重きを置いて,切り口を変えた授業を試みることがある。「積分と2次関数」について,教科書・問題集にある問題の解答例とその背景について考察し,積分計算をあまり行わない積分の問題の解答方法などを紹介する。
石川県金沢大学教育学部附属高等学校 岡山正歩
問題を正攻法で解答すると煩雑になる場合でも,少しの工夫でその煩雑さを軽減することができることがある。いわゆる「要領のよい解法」よい響きでいえば「エレガントな解法」少し本筋から外れた印象でいえば「裏技的な解法」である。本稿では,指定された点を通る傾きmの直線がある円に接するとき,傾きmの値と接点の座標を求める問題についてより簡便な方法を求めて考察する。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内
山口県立岩国高等学校教諭 西元教善
センター試験数学過去問題集。2014年度本試験(数学Ⅱ)第2問。この資料は,東京書籍の数学教科書の目次に準拠して,センター試験問題を分類したものです。データは問題と解答で構成されています。
東京書籍(株)
入試問題を解くことによって、図形の性質やいくつかの解法を考え整理していく。今回は、2004年度の順天堂大学(医学部)の問題から放物線と2本の接線の交点を中心に面積の公式を考察していく。
山梨県立吉田高等学校 長田茂
センター試験「高校数学」過去問題集。2010年本試験(数学II・B)第2問内容:この資料全体は,東京書籍の数学教科書の目次に準拠して,2000年から2011年までのセンター試験問題を分類したものです。この資料は,そのなかの1問題です。データは問題と解答で構成されています。※コピーして,授業でご利用ください。
東京書籍株式会社 数学編集部
センター試験「高校数学」過去問題集。2011年本試験(数学II・B)第2問内容:この資料全体は,東京書籍の数学教科書の目次に準拠して,2000年から2011年までのセンター試験問題を分類したものです。この資料は,そのなかの1問題です。データは問題と解答で構成されています。※コピーして,授業でご利用ください。
東京書籍株式会社 数学編集部
センター試験数学過去問題集。2010年度追試験(数学Ⅱ) 第2問この資料は、東京書籍の数学教科書の目次に準拠して、センター試験問題を分類したものです。データは問題と解答で構成されています。
東書Eネット事務局
センター試験数学過去問題集。2012年度本試験(数学Ⅱ) 第2問この資料は、東京書籍の数学教科書の目次に準拠して、センター試験問題を分類したものです。データは問題と解答で構成されています。
東書Eネット事務局
センター試験数学過去問題集。2010年度追試験(数学ⅡB) 第2問この資料は、東京書籍の数学教科書の目次に準拠して、センター試験問題を分類したものです。データは問題と解答で構成されています。
東書Eネット事務局
センター試験数学過去問題集。2011年度追試験(数学Ⅱ)第2問。この資料は,東京書籍の数学教科書の目次に準拠して,センター試験問題を分類したものです。データは問題と解答で構成されています。
東京書籍(株) 数学編集部
センター試験数学過去問題集。2012年度追試験(数学Ⅱ)第2問。この資料は,東京書籍の数学教科書の目次に準拠して,センター試験問題を分類したものです。データは問題と解答で構成されています。
東京書籍(株) 数学編集部
センター試験数学過去問題集。2013年度本試験(数学Ⅱ)第2問。この資料は,東京書籍の数学教科書の目次に準拠して,センター試験問題を分類したものです。データは問題と解答で構成されています。
東京書籍(株) 数学編集部
センター試験数学過去問題集。2015年度本試験(旧課程数学II・B)第2問。この資料は,東京書籍の数学教科書の目次に準拠して,センター試験問題を分類したものです。データは問題と解答で構成されています。
東京書籍(株) 数学編集部
センター試験数学過去問題集。2015年度本試験(数学II・B)第2問。この資料は,東京書籍の数学教科書の目次に準拠して,センター試験問題を分類したものです。データは問題と解答で構成されています。
東京書籍(株) 数学編集部
センター試験数学過去問題集。2009年度追試験(数学Ⅱ) 第2問この資料は、東京書籍の数学教科書の目次に準拠して、センター試験問題を分類したものです。データは問題と解答で構成されています。
東書Eネット事務局
センター試験数学過去問題集。2010年度本試験(数学Ⅱ) 第2問この資料は、東京書籍の数学教科書の目次に準拠して、センター試験問題を分類したものです。データは問題と解答で構成されています。
東書Eネット事務局
センター試験数学過去問題集。2011年度本試験(数学Ⅱ) 第2問この資料は、東京書籍の数学教科書の目次に準拠して、センター試験問題を分類したものです。データは問題と解答で構成されています。
東書Eネット事務局
[内容]直線・曲線の通過領域は論理と微分をはじめとする計算力の双方が身に付く古典的良問として,繰り返し入試問題の題材となっており,早めに理解しておくことが必須である。どうとらえるかによって3つの考え方が知られている。その3つをすべて理解しておくことが望ましいので,今回,それぞれの手法を再確認しておこう。特に第3の方法【同値法】と第2の方法【簾法】を身に着けなければならない。
東大寺学園中高等学校 本庄隆
センター試験数学過去問題集。2015年度本試験(数学II)第2問。この資料は,東京書籍の数学教科書の目次に準拠して,センター試験問題を分類したものです。データは問題と解答で構成されています。
東京書籍(株) 数学編集部
センター試験「高校数学」過去問題集。2009年本試験(数学II・B)第2問内容:この資料全体は,東京書籍の数学教科書の目次に準拠して,2000年から2011年までのセンター試験問題を分類したものです。この資料は,そのなかの1問題です。データは問題と解答で構成されています。※コピーして,授業でご利用ください。
東京書籍株式会社 数学編集部
センター試験「高校数学」過去問題集。2009年追試験(数学II・B)第2問内容:この資料全体は,東京書籍の数学教科書の目次に準拠して,2000年から2011年までのセンター試験問題を分類したものです。この資料は,そのなかの1問題です。データは問題と解答で構成されています。※コピーして,授業でご利用ください。
東京書籍株式会社 数学編集部