東書Eネット

東書Eネット

教科書単元リンク集・高等学校

教科書の単元から資料を探すページです。

301 数学Ⅱ1節 点と直線

指導資料

  • 点と直線の距離の公式について~生徒にとってわかりやすい証明を求めて
    2010年08月13日
    • 数学
    • 実践事例
    お気に入りに追加
    点と直線の距離の公式について~生徒にとってわかりやすい証明を求めて

    公式の証明後は,専ら,その公式を正しく覚えて使えることや問題での適切な使用が主眼になるが,できれば公式そのものについても,別証を考察する機会があればよいと思う。本稿は、「点と直線の距離」の公式についての考察である。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→http://ten.tokyo-shoseki.co.jp/downloadfr1/htm/cms68851.htm

    山口県立岩国高等学校教諭 西元教善

  • 分点の指導について~生徒にとってわかりやすい展開~
    2010年08月27日
    • 数学
    • 実践事例
    お気に入りに追加
    分点の指導について~生徒にとってわかりやすい展開~

    数直線上の分点の座標の公式は,数直線上の2点間の距離の比を(内項の積)=(外項の積)に直してできる1次方程式を解くことで求めてある。これに先立ち,この公式を求める前に,ある線分を指定した比に内分,外分する点を図示させる問題があるが,これとの関係には整合性はあるのであろうか。本稿では,分点の図示のときの発想に基づいて,分点の公式を生徒にとってわかりやすい展開を考察してみたい。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→http://ten.tokyo-shoseki.co.jp/downloadfr1/htm/cms68851.htm

    山口県立岩国高等学校教諭 西元教善

  • 中線定理(パップスの定理)について
    2010年07月16日
    • 数学
    • 実践事例
    お気に入りに追加
    中線定理(パップスの定理)について

    中線定理は、数学Ⅱでは,「図形と方程式」の「点と直線」で,数学Bでは「ベクトルの応用」で扱う。それぞれ,座標軸の適切な設定と点の座標の適切な設定,始点の適切な設定をすれば,その証明が易しくなる。そういう狙いのある学習場面である。しかし,もっと素朴な視点もある。本来の学習目的とは違うが,図形的な視点で,面積として捉えるという視点である。今回,授業で,生徒の理解を支える説明のつもりで,補足的に言ったことが,生徒の理解にブレを生じさせたのかもしれないという思いと,いや返って興味を抱かせたのではないかという思いが交錯した中で,本稿を書いてみた。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→http://ten.tokyo-shoseki.co.jp/downloadfr1/htm/cms68851.htm

    山口県立岩国高等学校教諭 西元教善

  • 中線定理を題材にした問題⑴~折角学習させるのであれば活用させよう~
    2015年11月06日
    • 数学
    • 実践事例
    お気に入りに追加
    中線定理を題材にした問題⑴~折角学習させるのであれば活用させよう~

    数学Ⅱの「点と直線」で『中線定理』を扱うが,中線定理をその後使うということはあまり意識されていないようであり,あくまでも座標を使って図形(三角形)の性質を調べることに主眼が置かれている。しかし,折角「定理」として学習させるのであれば,それをその後有効に活用する場面がある程度あってもよいのではないだろうか。本稿は,そのような思いで,この中線定理を題材にした問題を考察したものである。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内

    山口県立岩国高等学校教諭 西元教善

  • 中線定理を題材にした問題(2)
    2015年11月13日
    • 数学
    • 実践事例
    お気に入りに追加
    中線定理を題材にした問題(2)

    拙稿『中線定理を題材にした問題⑴~折角学習させるのであれば活用させよう~』では,定理の活用よりは定理の証明に重点が置かれている「中線定理」を題材にした問題を紹介した。他にも「中線定理」のよさが感じられる問題はないだろうかと考えてみた。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内

    山口県立岩国高等学校教諭 西元教善

  • (私の研究)単位ベクトルを利用してみよう!-点と直線の距離の公式の新しい証明-
    2017年10月01日
    • 数学
    • 実践事例
    お気に入りに追加
    (私の研究)単位ベクトルを利用してみよう!-点と直線の距離の公式の新しい証明-

    ニューサポート高校「数学」vol.28(2017年秋号)より。数学Ⅱの授業で,点と直線の距離の公式を学習します。教科書に書いてある証明を説明するのですが,生徒たちの反応はかんばしくなく,「どうせ,公式を暗記して使うことができればよいのでしょう?」とでも言いたそうな目をしています。でも,単なる暗記ではなく,証明まで理解してから使ってほしいですね。今回は,点と直線の距離の公式の証明の改良案を考えてみましょう。

    開成高等学校教諭 木部陽一

  • 素朴な思いからの探究
    2011年08月02日
    • 数学
    • 指導資料
    お気に入りに追加
    素朴な思いからの探究

    受験指導が長くなると,別解だけでなく問題に潜んでいる数学的な背景,すなわち問題の本質が何であるのか気になります。さらに,問題(教材)を追究していくと,最終的な拠り所は教科書であることを強く感じています。しかし、教科書を読んでいると別な視点での素朴な新たな問い(問題)が生まれてくることが時々あります。そこで今回は,その一部分を紹介し,その問題を探究していきたいと思います。

    福島県立橘高等学校教諭 名嶋 明宏

  • 「点と直線の距離公式」の導き方について
    2012年10月26日
    • 数学
    • 実践事例
    お気に入りに追加
    「点と直線の距離公式」の導き方について

    教科書の「点と直線の距離公式」の導出方法は,技巧的すぎて何をしたいのかが生徒には分かりづらいと感じる。高校1・2年生にはちょっと難しいけれども,かと言って公式として使用する手前,証明を載せざろう得ないというジレンマがよーく伺える。かつて「数学Ⅲ」に掲載されていて今は見かけなくなった「ロルの定理」のようにいずれ消えゆく運命なのではと思ってしまう。そこで,何通りかの方法を考えてみた。高校1・2年生程度で理解できる方法を3つ(方法1,方法2,方法3),理系の受験生のレベルでスッキリ理解できる方法を2つ(方法4,方法5)提示する。

    岩手県盛岡中央高等学校 鎌田凪平

  • ベクトルで点と直線の距離を考える
    2012年06月08日
    • 数学
    • 実践事例
    お気に入りに追加
    ベクトルで点と直線の距離を考える

    xy平面で,点(x,y)と直線ax+by+c=0との距離 d が数式(「点と直線の距離の公式」)で与えられることは,数学Ⅱの「図形と方程式」で扱います。比例式を扱ったあとでは,これを使った証明が一般的になっているようですが,証明方法はいろいろあります。 これを使えばあっさりと解決する問題にもかかわらず,この公式を覚えていなかったり,うろ覚えであったりで解けない生徒は少なくありません。何か面倒な公式のように思えるらしく,しっかり記憶し,必要に応じて正確に使えるという定着度が今一つです。そこで,点と直線の距離の意味とその導き方について,再度,ベクトルという別視点から考えなおす機会があってもよいのではないかと思い,考察してみました。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内

    山口県立岩国高等学校教諭 西元教善

  • 点と直線の距離の公式の導き方
    2012年06月18日
    • 数学
    • 実践事例
    お気に入りに追加
    点と直線の距離の公式の導き方

    最近の本校で使われている教科書では、直線ax+by+c=0と点(x1,y1)の距離を求める公式は具体的な例から求めることで証明を省いている。確かに現場で生徒の様子を見る限り、証明を期待している様子はないので、教科書通り具体例で距離を求めてから公式を紹介し、さらに、特別な場合として原点と直線の距離をとりあげても落胆する様子はない。しかし、本当にこれでよいのだろうか、どんな生徒にも、この公式発見の素晴らしさをもっと体験させたいと思い再検討をすることとした。

    埼玉県立豊岡高等学校 五十嵐英男

  • x,yによる方程式とベクトルによる方程式の比較分析
    2012年09月07日
    • 数学
    • 実践事例
    お気に入りに追加
    x,yによる方程式とベクトルによる方程式の比較分析

    直線の方程式で,ベクトル方程式は による方程式に比べてわかりにくい,馴染みにくいという印象を生徒はもっているようである。そこで,その考え方,表記法を徹底的に比較して,その溝を埋めようと思い,本稿を考察してみた。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内

    山口県立岩国高等学校教諭 西元教善

  • 教員研修を兼ねた大学入試問題研究⑵~センター試験と広大の問題~
    2014年05月16日
    • 数学
    • 実践事例
    お気に入りに追加
    教員研修を兼ねた大学入試問題研究⑵~センター試験と広大の問題~

    以前,『教員研修を兼ねた大学入試問題研究⑴~東大の問題を中心にして~』を本サイトで紹介した。本校では進路指導部の管轄のもとで,各教科(国・地歴・数・理・英)の教員が自己研修を兼ねて夏季休業中に研究する。これは平成17年度から始まり,東大,京大,センター試験,本校の生徒の進学希望の多い広島大あるいは山口大の問題中心に指導のための研修を行うものである。ここでは,筆者の担当した2011年度のセンター試験と広島大学の問題(各1問)について,紹介する。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内

    山口県立岩国高等学校教諭 西元教善

  • メネラウスの定理を座標で証明する~数学Aと数学Ⅱのコラボ~
    2010年09月24日
    • 数学
    • 実践事例
    お気に入りに追加
    メネラウスの定理を座標で証明する~数学Aと数学Ⅱのコラボ~

    メネラウスの定理の定理は,数学Aで扱う。証明は,三角形と平行線の性質を使えば簡単に証明される。この定理はある種のベクトルの問題の別解として,いわば裏技的に使われることもあって,ある意味重宝される。証明は,もちろんベクトルを使っての証明もできるが,本稿では,座標を使った証明を考察する。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→http://ten.tokyo-shoseki.co.jp/downloadfr1/htm/cms68851.htm

    山口県立岩国高等学校教諭 西元教善

  • 3つのd(discriminant,distance,difference)~円と直線の共有点の個数分類~
    2010年11月19日
    • 数学
    • 実践事例
    お気に入りに追加
    3つのd(discriminant,distance,difference)~円と直線の共有点の個数分類~

    数学Ⅱの図形と方程式で円と直線の共有点を扱う。共有点の座標を求めるのであれば,円の方程式と直線の方程式の連立方程式を解くようになる。共有点の個数を分類するのであれば,2次方程式の判別式でできると同時に,別解として円の中心と直線の距離dと円の半径rの大小比較でもできる。「判別式」と「点と直線の距離の公式」という一見関連性のなさそうな式が,円という特殊性によって同じ解決に至る共通アイテムとなる。。生徒にとっては,同一問題を別観点から求めることには意外性があり,興味を惹くと思われるのであるが,これが歓迎されるか,疎まれるか・・・それが教える側としては問題である。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内

    山口県立岩国高等学校教諭 西元教善

  • 生徒にとって簡便な解法~円の接線の傾きと接点の座標~
    2010年12月24日
    • 数学
    • 実践事例
    お気に入りに追加
    生徒にとって簡便な解法~円の接線の傾きと接点の座標~

    問題を正攻法で解答すると煩雑になる場合でも,少しの工夫でその煩雑さを軽減することができることがある。いわゆる「要領のよい解法」よい響きでいえば「エレガントな解法」少し本筋から外れた印象でいえば「裏技的な解法」である。本稿では,指定された点を通る傾きmの直線がある円に接するとき,傾きmの値と接点の座標を求める問題についてより簡便な方法を求めて考察する。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内

    山口県立岩国高等学校教諭 西元教善

  • 図形と方程式の領域での内心の教材化
    2011年05月31日
    • 数学
    • 実践事例
    お気に入りに追加
    図形と方程式の領域での内心の教材化

    平面図形と方程式領域では、重心を求める問題なら教科書に必ず取り上げられているし、外心、垂心を求める問題も、すでに教材化されている。しかし、内心だけは、教材化しにくいものであるとして避けられてきたように思う。実際、一般的な三角形で内心の教材化は、かなり難しい。もちろん、不可能ではないが、あまりに式が煩雑で受験問題ならともかく、授業での教材としては不適当と思われる。そこで、条件を限定した中で内心を求める問題を考えてみることにした。

    埼玉県立豊岡高等学校 五十嵐英男

  • 次元旅行への招待~三直角四面体と四平方の定理と次元の考え方~
    2009年11月13日
    • 数学
    • 実践事例
    お気に入りに追加
    次元旅行への招待~三直角四面体と四平方の定理と次元の考え方~

    展開図が正方形となる立体があることを知っていますか? ちなみに正方形の4隅をくっつけて1つの角にしようとすると、ぺしゃんこになって立体になりません。隣り合う2辺の中点を使って折ってみると,見事に三角錐が出来るはずです。このように、3つの直角で、1つの角を作る四面体において、非常におもしろい性質が知られています。

    大阪府立岸和田高等学校 近藤寛直

  • 三角形の重心・外心・内心・垂心から頂点までの距離について
    2012年06月15日
    • 数学
    • 実践事例
    お気に入りに追加
    三角形の重心・外心・内心・垂心から頂点までの距離について

    三角形の五心につきましては,傍心を除いて重心・外心・内心・垂心が教科書の本文で扱ってあります。傍心はその名の通り,三角形の傍ら(外部)にあります。一方,重心,内心は三角形の内部にあり,外心,垂心も鋭角三角形のときにはその内部にあります。つまり,鋭角三角形の場合には,傍心以外は三角形の内部にあります。では,そのときそれら4つの点から頂点までの距離は,3辺の長さをa,b,c(a≧b≧c)とするとき,a,b,cでのどのような式で表されているのか,特に頂点Aまでの距離と最大辺である対辺BCまでの距離について考察を行い,興味ある結果を得ました。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内

    山口県立岩国高等学校教諭 西元教善

  • 直線の方程式の指導について~x,yによる方程式とベクトル方程式~
    2012年01月20日
    • 数学
    • 実践事例
    お気に入りに追加
    直線の方程式の指導について~x,yによる方程式とベクトル方程式~

    直線の方程式・・・といってもその表現方法は2つある。x,yの方程式で表される直線と,ベクトル方程式で表される直線である。生徒は,前者については中学校から親しみ,直線に関する数学的シェマが形成されているが,そこに後者が数学Bのベクトル分野で出現して,既有のシェマへの同化・調整が迫られる。直線の,x,yによる方程式はわかっていながらもベクトルによる方程式になるとわからない,わかりづらい生徒は決して少なくはない。本稿は,なぜそうなのか,また,それらをうまく橋渡しする指導はないかと思い,考察したものである。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内

    山口県立岩国高等学校教諭 西元教善

  • 直線の方程式の指導について⑵~x,yによる方程式とベクトル方程式~
    2012年05月11日
    • 数学
    • 実践事例
    お気に入りに追加
    直線の方程式の指導について⑵~x,yによる方程式とベクトル方程式~

    拙稿『直線の方程式の指導について~x,yによる方程式とベクトル方程式~』では,x,yによる直線の方程式と直線のベクトル方程式の表現のギャップを埋める指導を考察しました。授業では,前回指導したことを確認しながら,次の内容に進むという形をとっていますが,その際に板書したことが生徒の理解の整理に役立ったと思われる,そのような事例を紹介します。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内

    山口県立岩国高等学校教諭 西元教善

  • コーシー・シュワルツの不等式の証明あれこれ~別証を考えさせよう~
    2013年02月22日
    • 数学
    • 実践事例
    お気に入りに追加
    コーシー・シュワルツの不等式の証明あれこれ~別証を考えさせよう~

    教科書では,『コーシー・シュワルツの不等式』という呼称で扱うことはないが,(ax+by)2≦(a2+b2)(x2+y2) という不等式が成り立ち,等号成立はay=bxのときであること,およびその応用を扱う。その証明は「不等式の証明」という単元で扱うため,その基本である(右辺)-(左辺)=…=(実数)2≧0という形で行う。つまり,『(a2+b2)(x2+y2)-(ax+by)2 =…=a2y2-2abxy+b2x2=(ay-bx)2≧0 よって(ax+by)2≦(a2+b2)(x2+y2) 等号成立はay-bx=0つまりay=bx』というようにするが,初学の生徒にとって,a2y2-2abxy+b2x2=(ay-bx)2の箇所がネックになるようである。そこで,他にはどのような証明があるか,よりわかりやすいものはないかと思い考察してみた。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内

    山口県立岩国高等学校教諭 西元教善

  • 三角形の中線・垂直二等分線・垂線・角の二等分線の長さについて~数学Ⅰ,Aのコラボレーション~
    2010年07月23日
    • 数学
    • 実践事例
    お気に入りに追加
    三角形の中線・垂直二等分線・垂線・角の二等分線の長さについて~数学Ⅰ,Aのコラボレーション~

    数学Aでは,三角形を①初等幾何(古典幾何)的に,②数学Ⅰでは三角比で,③数学Ⅱでは解析幾何的に,④数学Bではベクトルで考察する。特に,①②では同時期に扱うことが多い。折角であるから,理解を深めるためにコラボレーションしたらよいのではないかと思う。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→http://ten.tokyo-shoseki.co.jp/downloadfr1/htm/cms68851.htm

    山口県立岩国高等学校教諭 西元教善

  • 高校における平面図形の新しい授業~幾何センスで授業を豊かにする~
    2009年03月30日
    • 数学
    • 実践事例
    お気に入りに追加
    高校における平面図形の新しい授業~幾何センスで授業を豊かにする~

    高校から初等幾何の授業が失われて40年。その間に高校数学の授業から平面図形の性質を生かした部分が減っていないだろうか?せっかく復活した平面図形の知識を他の領域の学習に積極的に生かそう。幾何センスのある授業で式計算では経験できない面白く深い数学を体験させたい。

    前埼玉県立所沢中央高等学校 五十嵐英男

問題・テスト資料

おすすめの資料