教科書の単元から資料を探すページです。
かつて若かりし頃、先輩の教員から「なぜ2次関数を学ぶのだろうか?」との突飛な問いを投げかけられて、とまどったことがある。そのときは、「一番初等的な曲線を描く関数だから」と答えたが、改めてこの問いを振り返ると、意外に本質をついたものに思われる。我々は、なぜ2次関数を教えるのだろうか?その理由を考えずに指導していないだろうか?2次関数の重点とは何か考え直してみよう。
埼玉県立豊岡高等学校 五十嵐英男
2次関数を解析数学の入り口と位置づけ、代数的手法である平方完成を排除して増加減少にこだわった実践を試みた。結果として予想以上の成果をあげることができたので、実施する際のメリットデメリットも含め、実践版として再度紹介したい。
埼玉県立豊岡高等学校 五十嵐英男
東書教育シリーズ・発展的な内容 関連資料「課題学習・選択授業」2002年8月発行より。授業に役立つ数学の話。ここでとり上げた内容は,数学史をどのように教材として利用したらよいかの一例を示したものです。
数学教育研究家 片野善一郎
「(高校数学Ⅰ・A)課題学習指導実践記録集」東京書籍2013年7月より。本稿では,数学Ⅰの「2次関数」の単元についての課題学習の授業を提案したい。教師が課題を与えるのではなく,生徒が課題を作り,それを発表して他の生徒がその課題について評価する授業を考えた。
奈良女子大学附属中等教育学校教諭 横弥直浩
「高校数学へのひろがり~中高連携を意識した指導のくふう~」(2013年10月作成)より。中1 のはじめに数は負の数まで拡張された。それは0 を基準としたところから生まれているが,正の数,負の数の学習の終わりに,負の数は計算の自由性という観点から拡張されたという数の見方についても学習する。解の公式を使って方程式を解くことだけで終わらず,今まで使っている数だけでは解けない方程式があり,負の数が生まれた背景と同じように,すべての2 次方程式が自由に解けるようにしたいというところから先人たちが虚数を生み出したという点も,この授業を通して伝えていきたい。
東京書籍(株) 数学編集部
「高校数学へのひろがり~中高連携を意識した指導のくふう~」(2013年10月作成)より。中学校では,1次関数 y=ax+b のグラフは,y=ax のグラフをy 軸の正の方向にb だけ平行移動したものとして指導している。したがって, 関数 y =ax2 のグラフを学んだあとに,2次関数y=ax2+bx+c のグラフとの関係も平行移動したものとして学ぶことで,生徒に式とグラフの関係を問い直すことが可能となる。
東京書籍(株) 数学編集部
「高校数学へのひろがり~中高連携を意識した指導のくふう~」(2013年10月作成)より。つり橋をいろいろな形でトリミングさせ,最高地点と最低地点に着目し,5 つのパターンになることも発見させる。それぞれのパータンをx の変域で表現し,そこから最高地点と最低地点を考えさせたい。高校の教科書や問題を見せて,高いレベルに挑戦していることを理解させてもよい。
東京書籍(株) 数学編集部
「高等学校数学実践事例集」より。この資料は,高校数学の教科書で取り扱う内容に関して,いろいろな角度から解説をしたものです。それらは (1)導入例,(2)教えていく中で参考になる先生方へのコメント,(3)外国の教科書での扱い,(4)中学校の復習,(5)発展的内容,(6)専門の立場からの解説,(7)表記に関して,(8)教科書で扱っている内容の背景 など,先生方が授業されるときに参考になる内容を集めたものです。各内容は1ページにまとまっています。必要な部分を利用していただければと思います。
東京書籍(株) 数学編集部