教科書の単元から資料を探すページです。
数学では思わず「うまい!」と膝を打つような解法がある。そのような中に「中抜け現象」を利用する解法がある。代表的な例は数学Bの「数列」の中で「いろいろな数列の和」という項目で扱われている。2行目において両端以外は,隣り合う偶数番目と奇数番目が「打ち消しあって」消えてしまう。つまり,「中が抜けて」両端の差として求められる。教科書ではこのような数列の和は「いろいろな数列の和」として取り上げられているが,実はこの現象は「等差数列」「等比数列」の一般項を求めるときにも潜んでいる。ただ,そのような見方をしていない,あるいは気付いていないだけである。本稿では,この「中抜け現象」を意識して数列の一般項や和を再考してみる。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内
山口県立高森高等学校 西元教善
分数で表された数列の和では,部分分数の差に分解することが要求される。部分分数の差に分解することは,慣れてくると機械的にできてしまうが,初めて学ぶ生徒には決して易しくはないようである。教科書の解説でも,当然のように変形式が書いてあるが,どうしてそうなるのか疑問に思っている生徒がいる。その分解のメカニズムについて,生徒の立場に立って考察してみた。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内
山口県立岩国高等学校教諭 西元教善
『等差数列×等比数列の和を求める問題』は,数列では典型問題であるが,定期試験に出題しても結果はあまり芳しくない。その一因として,途中の指数計算や通分の計算力不足,答えが煩雑で検算もままならないことが挙げられ,手をつけない生徒も多い。そこで,検算に使えるような一般的な和の公式を導くことは可能であるかを考察してみた。
埼玉県立春日部高等学校 池内仁史
等差数列と等比数列の積数列とは少し乱暴な言い方であるが,第n項が等差数列の第n項と等比数列の第n項の積になっているものをいう。教科書の例題には,自然数列(初項1,公差1の等差数列)と初項1,公比rの等比数列の積数列の和が扱われていることが多い。そのような具体的な例の場合,同じ1であるために等差数列の公差d,等比数列の公比rの意味が見失われがちである。そこで,本稿では一般的に考察することで,その求め方の中にある2つの数列の性質を明確にしながら考察する。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内
山口県立岩国高等学校教諭 西元教善
自然数の冪の和,つまり1からnまでの各自然数のp乗の和について,教科書ではp=0,1,2,3のときが公式として扱ってある。p=0 のときは,初項1,公差1,項数nの等差数列の和として求められる。p=2 のときは,「中抜け現象」から求めることができる。これは大変うまい方法である。しかし,「うまい方法」=(生徒にとって)「わかりやすい方法」とは限らない。事前に数列の和の求め方の一つとして「中抜け現象」という求め方があることを知らせておかなければ,証明方法にギャップを感じるであろう。本稿では,Sn(0)=nΣk=11=nを基にしてSn(1),Sn(2),Sn(3)を求める方法を考察する。これは初めからこのような方法で求めることを勧めるのではなく,一通り教科書通りの証明を行ったあとで,別証として扱うことを念頭に置いたものである。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。会員向け無償ダウンロードはこちら→https://ten.tokyo-shoseki.co.jp/login/newenter.php?wurl=/detail/40776/
山口県立高森高等学校 西元教善
数列{an}の一般項を求める方法の1つとして,その階差数列{bn}を利用する方法があるが,このとき用いられる公式では,n≧2という条件が不可欠であり,かつ,Σの上がnではなくn-1になることから,数学が苦手な生徒は躓きやすい。本稿では,このn≧2,n-1を回避する方法を考えながら,数学が苦手な生徒向けの公式の改良について考察してみたい。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。会員向け無償ダウンロードはこちら
山口県立光高等学校 西元教善
自然数の累乗の和を求めるときに、kについての恒等式を用いる場合が多いのですが、この方法だと応用がきくものの自然数の和を求めた発想とはギャップがあり、生徒には唐突なイメージを与えるようです。そこで、パスカルの三角形の性質を利用する方法について述べています。
東京学芸大学附属高等学校教諭 大谷晋
これは生徒の数学理解観や学習目的観にも関わることであるが,今学んでいる数学的内容の理解が脇に置かれ,受験のため単に正解を求めるだけの作業に堕してはいないか,そのため学ぶ意欲が削がれているのではないか,そのために数学力が身に付かないのではないかという危惧がある。本稿では,等差数列と等比数列の積数列の和を題材にして,本当にその数学的な意味がわかっていてそのような解き方をしているのか,何となくマニュアル的なことを上滑りに使っているだけではないのか,そのギャップを埋めることを目的に考察してみる。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内
山口県立岩国高等学校教諭 西元教善
数学Bで扱う「数列」「ベクトル」を苦手とする生徒は少なくない。数列では和の記号Σを使うあたりからそのような兆候が現れる。階差数列,漸化式・・・と進めば尚更である。 本稿では,数列の初歩である「等差数列」「等比数列」「和の記号Σ」について生徒にとってわかりやすい指導を試みる。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内
山口県立岩国高等学校教諭 西元教善
四則計算(演算)というように,和・差・積・商(加・減・乗・除)の4つの演算があるが,そのうちの和・差(加・減),定数倍という特殊な積ではそれぞれ分配法則のようなことが,また,それは生徒にとっては常識的なことが成り立っているわけである。しかし,積・商(乗・除)については成り立たない。このことを注意したにも拘わらず,テスト時に積・商(乗・除)についてまで拡張して,使う生徒がいる。本稿では,Σ計算の誤答から学ぶ考察をする。 ※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内
山口県立岩国高等学校教諭 西元教善
本校理数科は昭和47年に設置され,爾来独自の行事や課題研究を行っている。特筆すべき課題研究は,平成15年から同17年まで文部科学省からの指定を受けたSSH (スーパーサイエンスハイスクール)であるが,それは長期的なものではなくわずか3年間で終了した。一方,長期的に継続している恒例行事には,①理数科合同合宿セミナー(1年次),②課題研究およびその発表会(2年次),③理数科学習合宿(2年次)等がある。本稿では,③の学習合宿で私の行った数学指導について紹介したい。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内
山口県立岩国高等学校教諭 西元教善
平方数の和の公式は,3次の乗法公式 の活用で求めることができる。では,それまでに学んでいる別の知識を活用して,平方数の和の公式を導けないであろうか。本稿では,組合せの数として,あるいは二項係数としての nCr の性質を利用して,平方数の和の公式を導くことを中心に考察する。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内
山口県立高森高等学校教諭 西元教善
数列は、知的好奇心さえあれば、学べるので、日頃数学に意欲が無い生徒でも挽回するチャンスかもしれない、教員もそのつもりで、いつもより楽しい気分で授業をしたいものである。教科書に書かれていない話題を色々と集めてまとめてみた。
埼玉県立豊岡高等学校 五十嵐英男
数列の和を表すのにΣという記号を使う指導をする。それまでは,足す,総和をとるという実感を伴うa1+a2+a3+………+anという書き方であったが,「……」という曖昧さの除去や表記の簡略化ができる記号Σを学習させる。これも生徒にとってはセンセーショナルな記号であろう。本稿では,Σ記号に慣れ,Σ公式を身につけ,Σ公式同士にある相互関係を生徒に見て欲しいと思うことについて考察した。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内
山口県立岩国高等学校教諭 西元教善
数列の問題について、生徒が自分で問題を作成し、1つの題材でいくつかの要素、特に漸化式と数列との基本がつながるような演習を考え実施した。その結果、漸化式は同じ数列で表し方の違いであり、楽に漸化式を作ることができるということを生徒は実感したようだと結んでいる。
東京女学館教諭 矢ヶ崎二郎
大学入学共通テストにおける記述式問題は先送りになったが,いずれこのような形式で出題されるので現高1生も準備しておく必要がある。よくある問題形式は「花子さん,太郎さん」あるいは「花子さん,太郎さん,先生」による対話形式によるものである。タイトルの「共通テストの記述式問題を意識した定期考査問題」は,高1生を対象にしたものである。生徒は,模試で「花子さん,太郎さん,(先生)」による対話形式による問題を経験しているが,これまでにない問題形式に戸惑った生徒もいたであろうと思われるので,定期考査でも慣れさせておく必要性があると思い,出題してみた。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。会員向け無償ダウンロードはこちら→https://ten.tokyo-shoseki.co.jp/detail/40776/
山口県立光高等学校 西元教善
以前,『教員研修を兼ねた大学入試問題研究⑴~東大の問題を中心にして~』を本サイトで紹介した。本校では進路指導部の管轄のもとで,各教科(国・地歴・数・理・英)の教員が自己研修を兼ねて夏季休業中に研究する。これは平成17年度から始まり,東大,京大,センター試験,本校の生徒の進学希望の多い広島大あるいは山口大の問題中心に指導のための研修を行うものである。ここでは,筆者の担当した2011年度のセンター試験と広島大学の問題(各1問)について,紹介する。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内
山口県立岩国高等学校教諭 西元教善
パスカルの三角形を見て気づくことや数列の和との関連、三角形n倍角の公式との関連について触れ、この題材は数学の不思議さや面白さを楽しめ、発展して探究することができる題材であると述べている。
東京学芸大学附属高等学校教諭 大谷晋
「センター試験『高校数学』過去問題集(2007年6月作成)」より。2003年本試験(数学I・A)第3問(1)(2)。この資料全体は,東京書籍「数学B」(2008-2013年度用)の教科書の目次に準拠して,2000年から2007年までのセンター試験問題の小問を分類したものです。この問題は,そのなかの1小問です。データは問題と解答を記載。授業の後,まとめとしての演習問題などでご利用いただけます。
東京書籍(株) 数学編集部
「センター試験『高校数学』過去問題集(2007年6月作成)」より。2005年追試験(数学I・A)第3問(1)(2)。この資料全体は,東京書籍「数学B」(2008-2013年度用)の教科書の目次に準拠して,2000年から2007年までのセンター試験問題の小問を分類したものです。この問題は,そのなかの1小問です。データは問題と解答を記載。授業の後,まとめとしての演習問題などでご利用いただけます。
東京書籍(株) 数学編集部
「センター試験『高校数学』過去問題集(2007年6月作成)」より。2006年本試験(数学II・B)第3問(1)(2)(3)。この資料全体は,東京書籍「数学B」(2008-2013年度用)の教科書の目次に準拠して,2000年から2007年までのセンター試験問題の小問を分類したものです。この問題は,そのなかの1小問です。データは問題と解答を記載。授業の後,まとめとしての演習問題などでご利用いただけます。
東京書籍(株) 数学編集部
「センター試験『高校数学』過去問題集(2007年6月作成)」より。2002年追試験(数学I・A)第3問(1)(2)(3)(4)。この資料全体は,東京書籍「数学B」(2008-2013年度用)の教科書の目次に準拠して,2000年から2007年までのセンター試験問題の小問を分類したものです。この問題は,そのなかの1小問です。データは問題と解答を記載。授業の後,まとめとしての演習問題などでご利用いただけます。
東京書籍(株) 数学編集部
教科書「数学1」「数学A」(2001年度版)準拠。10分間テスト。1ページ目がテスト問題,2ページ目が解答になっています。基礎計算の徹底と確認テスト。
東京書籍(株) 数学編集部
教科書「数学1」「数学A」(2001年度版)準拠。10分間テスト。1ページ目がテスト問題,2ページ目が解答になっています。基礎計算の徹底と確認テスト。
東京書籍(株) 数学編集部
センター試験数学過去問題集。2009年度追試験(数学ⅡB) 第3問この資料は,東京書籍の数学教科書の目次に準拠して,センター試験問題を分類したものです。データは問題と解答で構成されています。
東京書籍(株) TEN管理課
センター試験数学過去問題集。2012年度本試験(数学ⅡB) 第3問この資料は、東京書籍の数学教科書の目次に準拠して、センター試験問題を分類したものです。データは問題と解答で構成されています。
東書Eネット事務局
センター試験数学過去問題集。2009年度本試験(数学ⅡB) 第3問この資料は,東京書籍の数学教科書の目次に準拠して,センター試験問題を分類したものです。データは問題と解答で構成されています。
東京書籍(株) TEN管理課
センター試験数学過去問題集。2010年度本試験(数学ⅡB) 第3問この資料は,東京書籍の数学教科書の目次に準拠して,センター試験問題を分類したものです。データは問題と解答で構成されています。
東京書籍(株) TEN管理課
センター試験数学過去問題集。2011年度本試験(数学ⅡB) 第3問この資料は,東京書籍の数学教科書の目次に準拠して,センター試験問題を分類したものです。データは問題と解答で構成されています。
東京書籍(株) TEN管理課