教科書の単元から資料を探すページです。
同じ問題であっても、異なった分野の内容を使って解いたり証明したりできることがある。特に図形の場合は、数学A「図形の性質」と数学Ⅱ「図形と式」、つまり初等幾何あるいは解析幾何として解く(証明する)ことができる。例えば、問題の分野の出自を明かさず「大小2つの円が交わっているとき、2つの円の共通接線の2つの接点をA、Bとする。このとき、2つの円の共通弦の延長線は線分を2等分することを証明せよ。」という問題を生徒に与えたら、生徒はどのように取り組むであろうか。本稿で考察してみたい。
山口県立徳山高等学校 西元教善
演習の時間(3年次生)で扱った「円の性質」に関わる入試問題を,数値を変更して適度の問題として定期考査に出題しようとしたとき,変更ごとに問題を解くことよりも問題を一般化したほうが問題作りに効果的であると思い,考察してみた。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内
山口県立岩国高等学校教諭 西元教善
ニューサポート高校「数学」vol.27(2017年春号)より。数学Aの「図形の性質」に「作図」が導入され,コンパスと定規で作図可能な図形について考察することが重視されているが,さらに「折り紙によって作図可能な図形は何か?」ということまで考えてみれば,より作図に対する考察が深まると考えた。
金沢大学附属高等学校 外山 康平
《 Seeing is believing(百聞は一見に如かず)》という諺があるが,数学ではある意味《 Seeing is understanding(見ればわかる)》ということが往々にしてある。正式な証明ではないが,いわば視覚的な関係的理解である。本稿では,円周角の定理や接弦定理の証明において,図を見てその証明の本質やその流れが理解できるようになる授業について考察する。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。会員向け無償ダウンロードはこちら
山口県立光高等学校 西元教善
数学Aで「接弦定理(接線と弦のつくる角の定理)」を扱う。これは,「円の接線とその接点を通る弦のつくる角は,その角の内部にある弧に対する円周角に等しい」というものである。もちろん,これは平面上のことであるが,空間内で考えて拡張するとどうなるだろうか。本稿では,空間バージョンの接弦定理について考察してみたい。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。会員向け無償ダウンロードはこちら
山口県立光高等学校 西元教善
新学習指導要領では「課題学習」が新規に導入される。数学Aではどのようなことが課題学習として考えられるか,平面図形の作図をテーマに考察してみた。
山口県立岩国高等学校 西元教善
(新旧の指導医要領では数学Aの「平面図形」について)「理解」を深める姿勢は同じであるが,「処理」が「活用」に変化し,数学活動の積極性を求めるようになった。また,「(関係的に)わかって,できる」ことから「(関係的,論理的,記述的に)わかって,できて,使える」ことへと質的向上を図っている。また,大きな違い(私にとって)は,「証明」を重視,意識していることである。「関係的理解」は必ずしも「論理的理解」や「記述的理解」とは限らず,厳密な論理-数学的な理解や記述まで要求されないことがある。新学習指導要領では「証明」を強く意識することで,それを要求しているように思われる。
山口県立岩国高等学校教諭 西元教善
本稿は「方べきの定理」における「方べき」の意味や、球について「方べきの定理」を考えたらどうなるかについての生徒の理解を確認する指導に関する考察である。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→http://ten.tokyo-shoseki.co.jp/downloadfr1/htm/cms68851.htm
山口県立岩国高等学校教諭 西元教善
龍谷高校の教育の基本は、5プラス1 「キャリア教育 ・ ライフスキル教育 ・ 学力向上 ・ グローバル人財育成・ICT教育+心の教育」を通し卒業までの3年間で、 社会で必要となる 「人間力」 を培っています。本稿では、本校での実践を紹介します。
龍谷中学校・高等学校 教育イノベーションセンター 中島一明
平面図形領域が復活してしばらく経つが、どの教科書の記述も面白くない。定期考査でも求値問題で落ち着いてしまうことは誠に残念だ。それを改善したいと思い筆をとった。
埼玉県立豊岡高等学校 五十嵐英男
「よくわかる! 小・中・高 算数・数学のつながり」(2013年10月発行)より。教科書から抜粋した紙面を通して「どの学年で」「どんな内容を」「どのように学んでいるか」が概観できるようになっております。学習内容のつながりや扱いなどの概要の説明,学習段階・学習内容の一覧,学習内容に関する教科書紙面,学習内容に関する留意点(児童,生徒の実態,取り扱い上の配慮)などで構成。
東京書籍(株) 算数・数学編集部
「よくわかる! 小・中・高 算数・数学のつながり」(2013年10月発行)より。教科書から抜粋した紙面を通して「どの学年で」「どんな内容を」「どのように学んでいるか」が概観できるようになっております。学習内容のつながりや扱いなどの概要の説明,学習段階・学習内容の一覧,学習内容に関する教科書紙面,学習内容に関する留意点(児童,生徒の実態,取り扱い上の配慮)などで構成。
東京書籍(株) 算数・数学編集部
センター試験数学過去問題集。2015年度本試験(数学I・A)第6問。この資料は,東京書籍の数学教科書の目次に準拠して,センター試験問題を分類したものです。データは問題と解答で構成されています。
東京書籍(株) 数学編集部
「センター試験『高校数学』過去問題集(2007年6月作成)」より。2005年本試験(数学I・A)第4問。この資料全体は,東京書籍「数学I」(2007-2012年度用)「数学A」(2008-2013年度用)の教科書の目次に準拠して,2000年から2007年までのセンター試験問題の小問を分類したものです。この問題は,そのなかの1小問です。データは問題と解答を記載。授業の後,まとめとしての演習問題などでご利用いただけます。
東京書籍(株) 数学編集部
3時間半の中で1題40点の設問を合計5題解く(200点満点)という形式になっている北海道高等学校数学コンテストの問題の中の1つ。
北海道算数数学教育会高校部会代数解析研究会
「センター試験『高校数学』過去問題集(2007年6月作成)」より。2007年本試験(数学I・A)第3問(1)(2)。この資料全体は,東京書籍「数学I」(2007-2012年度用)の教科書の目次に準拠して,2000年から2007年までのセンター試験問題の小問を分類したものです。この問題は,そのなかの1小問です。データは問題と解答を記載。授業の後,まとめとしての演習問題などでご利用いただけます。
東京書籍(株) 数学編集部
センター試験数学過去問題集。2012年度追試験(数学Ⅰ)第3問。この資料は,東京書籍の数学教科書の目次に準拠して,センター試験問題を分類したものです。データは問題と解答で構成されています。
東京書籍(株) 数学編集部
センター試験数学過去問題集。2012年度本試験(数学ⅠA) 第3問この資料は、東京書籍の数学教科書の目次に準拠して、センター試験問題を分類したものです。データは問題と解答で構成されています。
東書Eネット事務局
1.円と相似比,2.図形と方程式(正の解),3.黄金分割(中末比),4.面積等分,5.面積等分その2,授業プリントなどでご活用いただけます。
福島県立橘高等学校 本間正幸