数学Ⅱの方程式の「剰余の定理」では,整式P(x)を,2つの1次式x-α,x-β(α≠β)で割ったときの余りをそれぞれa, bとするとき,その2つの1次式の積(x-α)(x-β)で割ったときの余りを求める問題を扱います。1次式の積は2次式で,それで割ったときの余りは1次以下の整式であることから,それをcx+dとおき,また商をQ(x)とおくと,P(x)= (x-α)(x-β)Q(x)+cx+dと表せます。また,剰余の定理によりP(α)=a,P(β)=bであることから,c,dについての連立方程式cα+d=a,cβ+d=bを得て,これをc,dについて解くことで余りが求められます。
教科書の例題ではこのようなことが扱われているので,整式P(x)をx-α,(x-β)2(α≠β)で割ったときの余りがそれぞれa,bx+cであるとき,P(x)を(x-α)(x-β)2で割った余りを求めるときにも,余りが2次以下の整式になることからpx2+qx+rとおいて求めようとするのは極めて当然の流れですが,それではp,q, rの値は定まりません。
本稿では,一般に整式P(x)をx-α,(x-β)n(α≠β,nは自然数)で割ったときの余りが与えられているとき,P(x)を(x-α)(x-β)nで割ったときの余りを求めることを生徒にわかりやすく指導することを考察しました。
※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内
山口県立岩国高等学校教諭 西元教善
A4判たて、4ページ
Word
docx/367.6KB
pdf/187.5KB
非会員の方は公開から一年を超えた資料は閲覧出来ません。会員登録をすると、全期間の資料を閲覧できます。