教科書の単元から資料を探すページです。
次期教育課程において,数学Aでは「整数の性質」が新設内容として取り扱われるようになるが,その中に,「ユークリッドの互除法」がある。指導要領の中に「整数の除法の性質に基づいて,ユークリッドの互除法の仕組みを理解し・・・」とあるから,当然その証明が出てくるはずである。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→http://ten.tokyo-shoseki.co.jp/downloadfr1/htm/cms68851.htm
山口県立岩国高等学校教諭 西元教善
整数にはさまざまな性質があるが,その中に「互いに素である自然数 に対して, となる整数 が存在する」という整数の重要な性質がある。2つの自然数が互いに素であるということはその最大公約数が1ということであるが,その1は の右辺の1であること,また,それはユークリッドの互除法で計算したときに出てくる1であることを生徒に知らせておくこともユークリッドの互除法の意義を深めるために役立つと思う。 本稿では,ユークリッドの互除法を活用し,「互いに素である自然数 に対して, である自然数 が存在することを考察する。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内
山口県立岩国高等学校教諭 西元教善
ユークリッドの互除法を用いて2つの自然数の最大公約数を求めるとき,簡便な計算法があることについて,拙稿『互除法と行列~新規内容と削除内容のコラボ~』で紹介した。この計算法については指導書でも扱っていないようである。ただし,ニューアクションα数学Ⅰ+Aでは,筆算で求める方法が紹介されているが,拙稿で紹介した方法とは異なる方法である。 本稿では,この方法と一般に教科書で説明してある方法,ニューアクションα数学Ⅰ+Aのp.331で紹介してある方法との比較を中心にして,生徒にとって扱いやすい方法はどれであるかについて考察する。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内
山口県立岩国高等学校教諭 西元教善
「(高校数学Ⅰ・A)課題学習指導実践記録集(2014年度版)」東京書籍2014年8月より。「数学A 整数の性質」の1つの項として「倍数の判別」がある。教科書では「2,5,4,3,9の順に倍数の判別の学習を行うが,生徒からは当然,「他の倍数の判別方法は?」と質問がある。6の倍数については大半の生徒は「2かつ3の倍数」と理解できる。また,8の倍数については4の倍数の判別法を応用して下3桁が8の倍数(または百の位が偶数の場合は下2桁,奇数の場合は100+下2桁が8の倍数)ということも簡単な説明で理解できる。しかし,7以上の素数の倍数は簡単に判別できない。そこで,証明方法の学習も兼ねて倍数の判別方法の発見と,その検証を考えさせる試みを行った。
栃木県立足利高等学校 大河原啓守
ユークリッド互除法の学習にあたり、生徒がよく知っている分数の通分や約分から導入し、様々な数学的活動をさせて「整数」について指導した、中学校での出前出張の実践指導例を紹介している。
東京都立戸山高等学校教諭 荻野大吾
「ニューサポート高校「数学」vol.33(2020年春号)特集:新教育課程に向けたポイント整理」より。高校生の皆さんにとって,机上で学ぶ数学と社会生活とは,かけ離れたものに思えるかもしれない。大人の中には「社会に出たら学校数学なんか使わないよ」と主張する人もいるようで,そんな主張を聞かされたらせっかくのやる気も削がれてしまうかもしれないだろう。でも,そんなことはない。世界は数学に満ちているのだ。しかし,なかなか信じてくれない人もいるので,今日はその一部をご紹介したい。使う数学は「整数」(数学A)と「確率分布」(数学B)である。
有限会社プリパス覆面の貴講師 数理哲人
龍谷高校の教育の基本は、5プラス1 「キャリア教育 ・ ライフスキル教育 ・ 学力向上 ・ グローバル人財育成・ICT教育+心の教育」を通し卒業までの3年間で、 社会で必要となる 「人間力」 を培っています。本稿では、本校での実践を紹介します。
龍谷中学校・高等学校 教育イノベーションセンター 中島一明
「よくわかる! 小・中・高 算数・数学のつながり」(2013年10月発行)より。教科書から抜粋した紙面を通して「どの学年で」「どんな内容を」「どのように学んでいるか」が概観できるようになっております。学習内容のつながりや扱いなどの概要の説明,学習段階・学習内容の一覧,学習内容に関する教科書紙面,学習内容に関する留意点(児童,生徒の実態,取り扱い上の配慮)などで構成。
東京書籍(株) 算数・数学編集部
「よくわかる! 小・中・高 算数・数学のつながり」(2013年10月発行)より。教科書から抜粋した紙面を通して「どの学年で」「どんな内容を」「どのように学んでいるか」が概観できるようになっております。学習内容のつながりや扱いなどの概要の説明,学習段階・学習内容の一覧,学習内容に関する教科書紙面,学習内容に関する留意点(児童,生徒の実態,取り扱い上の配慮)などで構成。
東京書籍(株) 算数・数学編集部
最近高校に入学してくる生徒は,あまり図(形)をかくことをしない傾向がある。しかし,いろいろな問題を視覚化して捉えれば分かりやすい。生徒の反応が表われやすく,理解の後押しをすることのできる教材を模索している。ここでは,高校入学後学習する計算分野の視覚化が可能で,少しは興味がわくような教材を取り上げる。
長野県立伊那北高等学校 橋爪正男
「高等学校数学実践事例集」より。(1) 剰余の定理,因数定理,(2) 因数定理から因数分解,(3) 解の公式,(4) 倍数と約数,(6)最大公約数,最小公倍数。この資料は,高校数学の教科書で取り扱う内容に関して,いろいろな角度から解説をしたものです。それらは,導入例や,参考になる先生方へのコメント,中学校の復習,発展的内容,教科書で扱っている内容の背景などを集めたものです。各内容は1ページにまとまっています。
稲永善数
「高等学校数学実践事例集」より。(1) 多項式の既約性,(2) 共通因数の見つけ方,(3) 互除法から判別式,(4) 判別式。この資料は,高校数学の教科書で取り扱う内容に関して,いろいろな角度から解説をしたものです。それらは,導入例や,参考になる先生方へのコメント,中学校の復習,発展的内容,教科書で扱っている内容の背景などを集めたものです。各内容は1ページにまとまっています。
稲永善数