教科書の単元から資料を探すページです。
背理法は証明に際し,「その命題が成り立たないと仮定して,論理・数学的な展開をすると,矛盾が生じる。その矛盾はその命題が成り立たないという仮定に起因するから,その仮定は棄却される。つまり,その命題は成り立つ。」という論法であり,「矛盾の出所」を見つけなければならない。本稿では,その矛盾の出所を踏まえて,背理法を考察する。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→http://ten.tokyo-shoseki.co.jp/downloadfr1/htm/cms68851.htm
山口県立岩国高等学校教諭 西元教善
実数の範囲に関わる集合や論理の問題については,数直線上に表すことで,解決の糸口が見えてくる。何より,視覚的に納得,処理できるという点がメリットである。本稿では,そのような問題について,生徒に解かせてみた問題を紹介する。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→http://ten.tokyo-shoseki.co.jp/downloadfr1/htm/cms68851.htm
山口県立岩国高等学校教諭 西元教善
数学Aで扱う「命題と論理」の中に,「必要条件」「十分条件」というのがある。日常でも使うことがあるので,わかりやすい概念かと思えば,必ずしもそうではないようである。なぜ,これをあれの必要条件というのか,またはこれをあれの十分条件というのか,「必要」「十分」という言葉の意味が数学用語の「必要条件」「十分条件」と密着していないようである。 生徒にとって「必要条件」「十分条件」がなぜわかりにくいか,その一因に「なぜ「必要条件」というのか」,「なぜ「十分条件」というのか」,そこに「必要」「十分」という言葉の意味が反映された定義がされていないからではないかと思う。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内
山口県立岩国高等学校教諭 西元教善
「解法は1通りではない」-数学の別解づくりを考えよう-稲永善数―平成15年4月作成より。数学では,ある条件のもとで同値なものを証明してしまうと,最初の「定義」に戻って証明する必要がなくなる。例えば,命題 D から命題 A を示すのは難しい。このようなとき,命題 A, 命題 B,命題 C が同値であるなら,命題 D から,命題 B や命題 C を証明すれば,命題 A を示したことになる。お母さんに言えば,お父さんに頼んだことになるのと同じ道理である。
稲永善数
マーク式の問題を解かせてみると,「よって」とか「したがって」とかの接続詞がなく,解答が式の羅列になっていることがある。20年近くも前,前任校でマーク問題を解かせ,机間巡視をしたときに,全員が式だけを書き,誰一人「よって」も「したがって」も書いていなかったときには驚嘆したものである。本稿では,証明や解答で根拠,そこから始まる論理的な推論,その帰結である結果を示すときに使われる言葉-よって,したがって,ゆえに,等-について,教科書での取扱いを中心に考察する。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内
山口県立岩国高等学校教諭 西元教善
必要条件・十分条件について問う問題は,センター試験ではよく出題される。条件がいくつか与えられ,それらについて「p⇒q」とか,「pかつq⇒rまたはs」などの命題について,⓪ 必要十分条件である,①必要条件であるが,十分条件ではない,②十分条件であるが必要条件ではない,③必要条件でも十分条件でもない,を答えさせるというものである。本稿では,必要条件・十分条件についての問題が十分にはわかっていない生徒が質問に来て,「目から鱗が取れた」といって納得した指導例を紹介する。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内
山口県立岩国高等学校教諭 西元教善
数学Aの「論証」で「背理法」を扱います。それは,ある命題を証明するときの1つの方法として,「その命題が成り立たないと仮定すると矛盾が生じることから,その命題は成り立たなければならない」というものですが,どんな矛盾が生じるのかは命題によって異なります。 仮定に反する場合もあれば,それまでに認められている数学的事実に矛盾する場合もあります。単に「矛盾が生じる」といっても生徒には「どんな矛盾が生じるか」という予備知識がない,あるいは明確に意識されていないことがあります。これでは,背理法で証明するといってもその意味がわかりにくいのではないでしょうか。何となく論理的に展開していけば矛盾に行き当たることもあるでしょうが,代表的な「矛盾の例」を事前に提示しておくと理解しやすいのではないかと思います。本稿は代表的な矛盾の例を中心に考察したものです。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内
山口県立岩国高等学校教諭 西元教善
数学Ⅰでは「命題と論証」,数学Aでは「整数の性質」を扱う。命題と証明では「対偶を利用する証明」や「背理法」という証明方法を扱うが,その題材は整数に関わるものが多い。東書数学Aでは整数の性質において,発展として「合同式」が扱ってあるが,この合同式を活用すれば,整数に関わる証明を簡潔に思考できたり,記述できたりする。 本稿では,教科書の例題等で扱われている対偶を利用する証明や背理法を,合同式を用いて行えばどのようになるか,また,それを通じて合同式のよさを生徒に実感させるような考察をする。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。会員向け無償ダウンロードはこちら→https://ten.tokyo-shoseki.co.jp/login/newenter.php?wurl=/detail/40776/
山口県立高森高等学校教諭 西元教善
√2P1=√2P2=√2は無理数である。また,3√3P1=3√3, 3√3P2=3√3!=3√6も無理数である。では,一般にn√nPr(nは2以上の自然数,rはn以下の自然数)はすべて無理数であろうか。本稿では,このことについて考察する。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内
山口県立岩国高等学校教諭 西元教善
連続する2つの整数は、一方は奇数で他方は偶数であるからその積は偶数、つまり2の倍数である。すると、連続する3つの整数は連続する2つの整数の積が2の倍数であり、3つの整数のうち一つは3の倍数であり、2と3が互いに素であることから2×3=6の倍数になる。2=2!,6=3!であるから、n=2,3のときには連続するn個の整数の積はn!の倍数であるといえる。 では、一般に2以上のすべての整数に対して連続するn個の整数の積がn!の倍数といえるのかということが問題になる。本稿では、このことについて考察する。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内
山口県立岩国高等学校教諭 西元教善
かつて旧課程の時代に、数学Ⅰの2次方程式の理論で「判別式」という用語が使えなかったため、苦慮された先生方も少なくないのではないだろうか。数学的概念を適切に表現する用語や記号が使えなくなると、かえってわかりにくさや使いづらさが増大するのが常である。本稿では、用語や記号の記載について、教科書内容に関する要望をいくつか申し上げさせて頂きたい。※文中の数式は、「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには、「Tosho数式エディタ」が導入されていることが必要です。会員向け無償ダウンロードはこちら
山口県立光高等学校 西元教善
拙稿「素因数分解の一意性について ~ 一意性をもっと前面に出そう ~ 」で整数の性質を指導する際に「素因数分解の一意性」をもっと前面に出したらどうであろうかという提案をした。というのは,これは整数の重要な性質であるからである。教科書に載っている証明問題を「素因数分解の一意性」を用いるとどのようにできるのか,前稿では触れなかった問題に焦点を当ててみたい。※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内
山口県立高森高等学校教諭 西元教善
やや大げさなタイトルを掲げたが, 定期テスト後にテスト範囲の復習を兼ねて, 関連する整数問題を取り扱うことを試みている。大学受験対策を考慮すると, 高校3 年間のうちのどこかで整数問題を取り扱う必要性はあるものの, 現行の学習指導要領においてはどの時期にどのような形でどの程度取り扱うのが適当なのかはよくわからない。平成2 4 年度から先行実施される数学科の新学習指導要領『数学A 』では, 選択ではあるものの, 正式に“整数” が取り扱われることとなる。それに先駆けて, 整数問題を1 年次から徐々に取り扱っていく方針で取り組みはじめたところである。
宮崎県立宮崎西高等学校 陶山宜浩
「よくわかる! 小・中・高 算数・数学のつながり」(2013年10月発行)より。教科書から抜粋した紙面を通して「どの学年で」「どんな内容を」「どのように学んでいるか」が概観できるようになっております。学習内容のつながりや扱いなどの概要の説明,学習段階・学習内容の一覧,学習内容に関する教科書紙面,学習内容に関する留意点(児童,生徒の実態,取り扱い上の配慮)などで構成。
東京書籍(株) 算数・数学編集部
センター試験数学過去問題集。2013年度追試験(数学ⅠA)第1問[2]。この資料は,東京書籍の数学教科書の目次に準拠して,センター試験問題を分類したものです。データは問題と解答で構成されています。
東京書籍(株)
センター試験数学過去問題集。2014年度追試験(数学I・A)第1問[2]。この資料は,東京書籍の数学教科書の目次に準拠して,センター試験問題を分類したものです。データは問題と解答で構成されています。
東京書籍(株) 数学編集部
センター試験数学過去問題集。2015年度本試験(数学I)第1問[2]。この資料は,東京書籍の数学教科書の目次に準拠して,センター試験問題を分類したものです。データは問題と解答で構成されています。
東京書籍(株) 数学編集部
センター試験数学過去問題集。2015年度本試験(数学I・A)第2問[1]。この資料は,東京書籍の数学教科書の目次に準拠して,センター試験問題を分類したものです。データは問題と解答で構成されています。
東京書籍(株) 数学編集部
センター試験数学過去問題集。2015年度本試験(旧課程数学I・A)第1問[2]。この資料は,東京書籍の数学教科書の目次に準拠して,センター試験問題を分類したものです。データは問題と解答で構成されています。
東京書籍(株) 数学編集部
教科書「数学1」「数学A」(2001年度版)準拠。10分間テスト。1ページ目がテスト問題,2ページ目が解答になっています。基礎計算の徹底と確認テスト。
東京書籍(株) 数学編集部
教科書「数学1」「数学A」(2001年度版)準拠。10分間テスト。1ページ目がテスト問題,2ページ目が解答になっています。基礎計算の徹底と確認テスト。
東京書籍(株) 数学編集部
3時間半の中で1題40点の設問を合計5題解く(200点満点)という形式になっている北海道高等学校数学コンテストの問題の中の1つ。問題のキーワード:[合同なn角形、背理法 他]
北海道算数数学教育会高校部会代数解析研究会
センター試験「高校数学」過去問題集。2009年本試験(数学I・A)第1問[2]内容:この資料全体は,東京書籍の数学教科書の目次に準拠して,2000年から2011年までのセンター試験問題を分類したものです。この資料は,そのなかの1問題です。データは問題と解答で構成されています。※コピーして,授業でご利用ください。
東京書籍株式会社 数学編集部
センター試験「高校数学」過去問題集。2009年追試験(数学I・A)第1問[2]内容:この資料全体は,東京書籍の数学教科書の目次に準拠して,2000年から2011年までのセンター試験問題を分類したものです。この資料は,そのなかの1問題です。データは問題と解答で構成されています。※コピーして,授業でご利用ください。
東京書籍株式会社 数学編集部
センター試験「高校数学」過去問題集。2011年本試験(数学I・A)第1問[2]内容:この資料全体は,東京書籍の数学教科書の目次に準拠して,2000年から2011年までのセンター試験問題を分類したものです。この資料は,そのなかの1問題です。データは問題と解答で構成されています。※コピーして,授業でご利用ください。
東京書籍株式会社 数学編集部
センター試験数学過去問題集。2012年度本試験(数学ⅠA) 第1問[2]この資料は、東京書籍の数学教科書の目次に準拠して、センター試験問題を分類したものです。データは問題と解答で構成されています。
東書Eネット事務局
センター試験数学過去問題集。2010年度追試験(数学ⅠA) 第1問[1]この資料は、東京書籍の数学教科書の目次に準拠して、センター試験問題を分類したものです。データは問題と解答で構成されています。
東書Eネット事務局
センター試験数学過去問題集。2010年度追試験(数学ⅠA) 第1問[2]この資料は、東京書籍の数学教科書の目次に準拠して、センター試験問題を分類したものです。データは問題と解答で構成されています。
東書Eネット事務局
センター試験数学過去問題集。2012年度追試験(数学ⅠA)第1問[2]。この資料は,東京書籍の数学教科書の目次に準拠して,センター試験問題を分類したものです。データは問題と解答で構成されています。
東京書籍(株) 数学編集部
センター試験数学過去問題集。2013年度本試験(数学ⅠA)第1問[2]。この資料は,東京書籍の数学教科書の目次に準拠して,センター試験問題を分類したものです。データは問題と解答で構成されています。
東京書籍(株) 数学編集部
「センター試験『高校数学』過去問題集(2007年6月作成)」より。2006年本試験(数学I・A)第1問[1][2](1)(2)(3)。この資料全体は,東京書籍「数学I」(2007-2012年度用)「数学A」(2008-2013年度用)の教科書の目次に準拠して,2000年から2007年までのセンター試験問題の小問を分類したものです。この問題は,そのなかの1小問です。データは問題と解答を記載。授業の後,まとめとしての演習問題などでご利用いただけます。
東京書籍(株) 数学編集部
「センター試験『高校数学』過去問題集(2007年6月作成)」より。2000年本試験(数学I・A)第2問[1](2)(4)全体[2]。この資料全体は東京書数学Ⅰ(2007-2012年用)「数学A」(2008-2013年度用)「数学II」(2008-2013年度用)の教科書の目次に準拠して,2000年から2007年までのセンター試験問題の小問を分類したものです。この問題は,そのなかの1小問です。データは問題と解答を記載。授業の後,まとめとしての演習問題などでご利用いただけます。
東京書籍(株) 数学編集部
センター試験数学過去問題集。2012年度本試験(数学ⅠA) 第1問[1]この資料は、東京書籍の数学教科書の目次に準拠して、センター試験問題を分類したものです。データは問題と解答で構成されています。
東書Eネット事務局
センター試験「高校数学」過去問題集。2009年本試験(数学I・A)第1問[1]内容:この資料全体は,東京書籍の数学教科書の目次に準拠して,2000年から2011年までのセンター試験問題を分類したものです。この資料は,そのなかの1問題です。データは問題と解答で構成されています。※コピーして,授業でご利用ください。
東京書籍株式会社 数学編集部
センター試験「高校数学」過去問題集。2011年本試験(数学I・A)第1問[1]内容:この資料全体は,東京書籍の数学教科書の目次に準拠して,2000年から2011年までのセンター試験問題を分類したものです。この資料は,そのなかの1問題です。データは問題と解答で構成されています。※コピーして,授業でご利用ください。
東京書籍株式会社 数学編集部
センター試験「高校数学」過去問題集。2010年本試験(数学I・A)第1問[1]内容:この資料全体は,東京書籍の数学教科書の目次に準拠して,2000年から2011年までのセンター試験問題を分類したものです。この資料は,そのなかの1問題です。データは問題と解答で構成されています。※コピーして,授業でご利用ください。
東京書籍株式会社 数学編集部
ニューサポート高校「数学」vol.19 特集:集中連載 先輩,ここどげん教えると?Part 1(2013年春号)より。「高校数学を横に切る!」「“ドキッ”とする生徒からの質問集」に継いで,久しぶりの本稿掲載になります。
九州数学シンクタンクグループ