東書Eネット

東書Eネット

三平方の定理と3項間の漸化式~フィボナッチ数列の視覚化~

  • 数学
  • 実践事例
公開日:2016年05月27日
三平方の定理と3項間の漸化式~フィボナッチ数列の視覚化~

周知の通り,三平方の定理は直角三角形の3辺の間にある関係を表している。その関係は,斜辺の平方は直角を挟む2辺のそれぞれの平方の和に等しいということであるが,これは斜辺を1辺とする正方形の面積は,直角を挟む2辺のそれぞれを1辺とする正方形の面積の和に等しいという図形的な意味もある。これを3項間の漸化式と結びつけて考察したい。本稿では,三平方の定理の図形的な意味を意識して,3項間の漸化式S1=a12, S2=a22,Sn+2=Sn+1+Snを満たす数列一般項{Sn}を求めてみたい。
※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内

山口県立岩国高等学校教諭 西元教善

資料ファイル

A4判たて,5ページ

  • Word

    Word

    docx/238.4KB

  • PDF

    PDF

    pdf/352.1KB

非会員の方は公開から一年を超えた資料は閲覧出来ません。会員登録をすると、全期間の資料を閲覧できます。

戻る

関連する単元のリンク

おすすめの資料