東書Eネット

東書Eネット

2次不等式 x2+px+q<0(p,q:整数)の整数解の個数と放物線y=x2+px+qがx軸から切り取る線分の長さの関係

  • 数学
  • 実践事例
公開日:2016年02月19日
2次不等式 x2+px+q<0(p,q:整数)の整数解の個数と放物線y=x2+px+qがx軸から切り取る線分の長さの関係

2次不等式 x2-4x+3<0の解は(x-1)(x-3)<0より1<x<3であり,これを満たす整数xは x=1だけでその個数は1である。また,2次方程式x2-4x+3=0の解はx=1,3であるから,放物線 x2-4x+3が x軸から切り取る線分の長さは3-1=2である。p,qを整数として,2次不等式 x2+px+q<0…①,2次方程式x2+px+q=0…②,放物線y=x2+px+q……③を考え,2次不等式①の解を満たす整数の個数をN,放物線③が x軸と異なる2点で交わるとき,それが x軸から切り取る線分の長さを Lとする。一般に,NとLの間にはどのような関係があるのであろうか。
 本稿では,このことについて考察する。

※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内

山口県立岩国高等学校教諭 西元教善

資料ファイル

A4判たて,4ページ

  • Word

    Word

    docx/308.0KB

  • PDF

    PDF

    pdf/341.8KB

非会員の方は公開から一年を超えた資料は閲覧出来ません。会員登録をすると、全期間の資料を閲覧できます。

戻る

関連する単元のリンク

おすすめの資料