三角形ABCの内部にある点Pから3辺AB,BC,CAまでの距離をそれぞれd1,d2,d3とするとき,d1=d2=d3であればd1(=d2=d3)は三角形ABCの内接円の半径であり,点Pは三角形ABCの内心である。そのとき,三角形ABCの面積をSとするとd1(AB+BC+CA)=2Sという関係がある。一般に,d1BC+d2CA+d3AB=2Sであり,面積Sは3辺の長さや3つの内角から求められる。当然,d1,d2,d3は3辺の長さや3つの内角と関係があるが,どのような関係があるのかについて,コーシー・シュワルツの不等式を活用して,不等式という観点から考察したい。
※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内
山口県立岩国高等学校教諭 西元教善
A4判たて,6ページ
Word
docx/287.0KB
pdf/344.7KB
非会員の方は公開から一年を超えた資料は閲覧出来ません。会員登録をすると、全期間の資料を閲覧できます。