一般に,関数y=f(x)のグラフを描くときには,f(x)の増減(+凹凸)表を作成する。しかし,そのときに導関数y=f'(x)のグラフや第2次導関数y=f”(x)のグラフを同一平面に描くことはない。しかし,これらを同一平面に描くことによって視覚的に理解されるのではないだろうか。式の上での理解だけでなくそれぞれのグラフ的な意味を伴って理解されればより深い理解が得られるように思う。本稿では,2次関数,3次関数について,そのグラフと導関数や第2次導関数のグラフを同一平面に描くことで関数の増減や凹凸について視覚的に理解させる指導の一例とする。
※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内
山口県立岩国高等学校教諭 西元教善
A4判たて,5ページ
Word
docx/1.0MB
pdf/620.2KB
非会員の方は公開から一年を超えた資料は閲覧出来ません。会員登録をすると、全期間の資料を閲覧できます。