関数f(x)の第1次導関数f´(x)は関数y=f(x)のグラフを考えるとき、そのグラフ上の点における接線の傾きを表す。f´(x)>0 である区間I では接線の傾きが正で、接線が右上がりであることから関数は増加し、f´(x)<0である区間I では接線の傾きが負で、接線が右下がりであることから関数は減少するというわけである。ラフな説明だが生徒には受け入れやすいものである。
それに対してf´´(x)>0である区間I では、接線の傾きが増加し、そこから関数y=f(x)のグラフは下に凸という状態になるのだが、それがわかりにくく、その理由を何回も聞きに来る生徒がいた。
f´(a)を傾きとする接線は1点(a, f(a) )におけるものであることに対して、下に凸ということは1点におけるものではなく、x=aの属するf´´(x)>0ある区間Iでのことである。そこを明確にし、関数y=f(x)のグラフ、第1次導関数y=f´(x)のグラフおよび第2次導関数y=f´´(x)のグラフの関係から生徒にとってわかりやすい説明を試みた。この説明で生徒はもやもや感が解消されて理解できたようであった。
※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内
山口県立岩国高等学校教諭 西元教善
A4判たて,5ページ
Word
doc/914.0KB
pdf/910.8KB
非会員の方は公開から一年を超えた資料は閲覧出来ません。会員登録をすると、全期間の資料を閲覧できます。