2数の場合の相加・相乗平均の関係は,2個の2乗数の和と2個の数の積の2倍の差の関係から証明される。また,3数の場合の相加・相乗平均の関係は,3個の3乗数の和と3個の数の積の3倍の差の関係を変形して証明される。
本稿では,相加・相乗平均の関係に関わる関係(平方の和,平方の正数倍の和)として,正数のn個のn乗数の和とn個の積のn倍の差について,それがどのように表されるかについて考察する。
※文中の数式は,「Tosho数式エディタ」で作成されています。ワード文書で数式を正しく表示するためには,「Tosho数式エディタ」が導入されていることが必要です。無償ダウンロードはこちら→無償ダウンロードのご案内
山口県立高森高等学校教諭 西元教善
A4判たて,5ページ
Word
docx/484.2KB
pdf/358.1KB
非会員の方は公開から一年を超えた資料は閲覧出来ません。会員登録をすると、全期間の資料を閲覧できます。