2章・**1**節 平面上のベクトル

- ① 有向線分とベクトル
- ② ベクトルの計算

組	番号	名 前

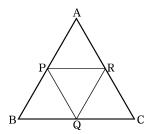
- 次の をうめなさい。
 右の図のように、向きのついた線分 AB
 を といい、AB において、A
 を という。
- (2) 有向線分について、その位置を問題にしないで、向きと長さだけに着目したものを という。
- (3) A を始点, B を終点とする有向線分 AB の表すベクトルのことを を と表す。
- (4) 有向線分 AB の長さを AB のといい、 と表す。
- (5) 2つのベクトル \vec{a} , \vec{b} について、向きが同じで、大きさが等しいとき、 \vec{a} と \vec{b} は といい、 \vec{a} \vec{b} と表す。また、ベクトル \vec{a} と向きが反対で、大きさが等しいベクトルのことを \vec{a} の といい、と表す。
- (6) 2つのベクトル \overrightarrow{AB} , \overrightarrow{BC} に対して、その \square を $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ と定める。 また、2つのベクトル \overrightarrow{a} , \overrightarrow{b} に対して、その \square $\overrightarrow{a} \overrightarrow{b}$ を $\overrightarrow{a} \overrightarrow{b} = \overrightarrow{a} + (-\overrightarrow{b})$ と定める。
- (7) k>0のとき

 $k\vec{a}$ は、 \vec{a} と 向きで大きさが k 倍のベクトル $-k\vec{a}$ は、 \vec{a} と 向きで大きさが k 倍のベクトル

- (8) ベクトルの実数倍の性質
 - [1] $k(l\vec{a}) = ()\vec{a}$
 - [2] $\vec{ka} + \vec{la} = ($ $)\vec{a}$
 - [3] $k(\vec{a}+\vec{b})=$
- (9) ベクトルの平行条件

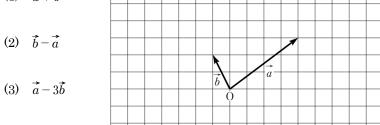
 \vec{a} $otin \vec{0}$, \vec{b} $otin \vec{0}$, k を実数とするとき \vec{a} $\#\vec{b}$ \iff \vec{b} $otin \vec{0}$

2 正三角形 ABC の各辺の中点をそれ ぞれ P, Q, Rとし、各頂点と辺の 中点を始点、終点とするベクトルを 考える。次のベクトルを答えなさい。

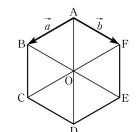


- (1) PRと等しいベクトル
- (2) **PQ** の逆ベクトル

3 下の図で、次のベクトルを点○を始点として図示しなさい。

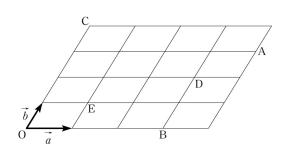


- 4 次の計算をしなさい。 甚
- (1) $\vec{a} 2\vec{a} + 5\vec{a}$
- (2) $2(\vec{a} 3\vec{b}) 3(\vec{a} 2\vec{b})$
- **5** 正六角形 ABCDEF の中心を O とする。 $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{AF} = \overrightarrow{b}$ とするとき, 次のベクトルを \overrightarrow{a} , \overrightarrow{b} で表しなさい。 **因**



- (1) \overrightarrow{BC}
- (2) **EB**
- (3) <u>FD</u>
- **f** 右の図で、次 のベクトルを、 *a*、*b*を用いて 表しなさい。

技



- (1) \overrightarrow{OA}
- (2) BC
- (3) <u>DE</u>

2章 **· 1**節 平面上のベクトル

- ① 有向線分とベクトル
- ② ベクトルの計算

糸	1	番号	名	前	

- 1 次の をうめなさい。 知
- (1) 右の図のように、向きのついた線分 AB を**有向線分** といい、AB において、A を**始点** 、Bを**終点** という。

- (2) 有向線分について、その位置を問題にしないで、向きと長さだ けに着目したものを**ベクトル**という。
- (3) A を始点、B を終点とする有向線分 AB の表すベクトルのこと $\overline{\mathbf{AB}}$ と表す。
- (4) 有向線分 AB の長さを AB の **大きさ** といい, **AB** と表す。
- (5) 2つのベクトル \vec{a} , \vec{b} について、向きが同じで、大きさが等しいとき、 \vec{a} と \vec{b} は、等しいといい、 \vec{a} \equiv \vec{b} と表す。また、ベクトル \vec{a} と向きが反対で、大きさが等しいベクトルのことを \vec{a} の 逆ベクトル といい、 $-\vec{a}$ と表す。
- (6) 2つのベクトル \overrightarrow{AB} , \overrightarrow{BC} に対して、その $\overleftarrow{\mathbf{n}}$ を $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$ と定める。 また、2つのベクトル \overrightarrow{a} 、 \overrightarrow{b} に対して、その $\overrightarrow{\underline{\mathbf{E}}}$ $\overrightarrow{a} \overrightarrow{b}$ を $\overrightarrow{a} \overrightarrow{b} = \overrightarrow{a} + (-\overrightarrow{b})$ と定める。
- (7) $k > 0 \, \mathcal{O} \, \mathcal{E}$

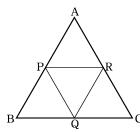
 $k\vec{a}$ は、 \vec{a} と 同じ 向きで大きさが k 倍のベクトル $-k\vec{a}$ は、 \vec{a} と 反対 向きで大きさが k 倍のベクトル

- (8) ベクトルの実数倍の性質
 - [1] $k(l\vec{a}) = (|\vec{k} \times l|)\vec{a}$
 - [2] $k\vec{a} + l\vec{a} = (|\mathbf{k} + \mathbf{l}|)\vec{a}$
 - [3] $k(\vec{a}+\vec{b})=\vec{k}\vec{a}+k\vec{b}$
- (9) ベクトルの平行条件

 $\vec{a} \neq \vec{0}$, $\vec{b} \neq \vec{0}$, k を実数とするとき $\vec{a} \parallel \vec{b} \iff \vec{b} = \vec{ka}$

技

2 正三角形 ABC の各辺の中点をそれ ぞれ P, Q, Rとし、各頂点と辺の 中点を始点、終点とするベクトルを 考える。次のベクトルを答えなさい。

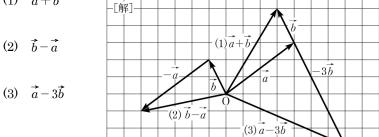


(1) PR と等しいベクトル

[解] \overrightarrow{BQ} , \overrightarrow{QC}

- (2) PQ の逆ベクトル
- [解] \overline{QP} , \overline{CR} , \overline{RA}

- **3** 下の図で、次のベクトルを点○を始点として図示しなさい。
- (1) $\vec{a} + \vec{b}$



(1) $\vec{a} - 2\vec{a} + 5\vec{a}$

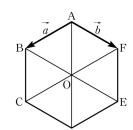
[解] $\vec{a} - 2\vec{a} + 5\vec{a} = (1 - 2 + 5)\vec{a} = 4\vec{a}$

4 次の計算をしなさい。 技

(2) $2(\vec{a} - 3\vec{b}) - 3(\vec{a} - 2\vec{b})$

[解] $2(\vec{a}-3\vec{b})-3(\vec{a}-2\vec{b})=2\vec{a}-6\vec{b}-3\vec{a}+6\vec{b}=(2-3)\vec{a}+(-6+6)\vec{b}=-\vec{a}$

5 正六角形 ABCDEF の中心を O とする。 $\overrightarrow{AB} = \overrightarrow{a}$, $\overrightarrow{AF} = \overrightarrow{b}$ とするとき, 次のベクトルを \overrightarrow{a} , \overrightarrow{b} で表しなさい。 因



(1) \overline{BC}

[M] $\overrightarrow{BC} = \overrightarrow{AO} = \overrightarrow{AB} + \overrightarrow{BO} = \overrightarrow{AB} + \overrightarrow{AF} = \overrightarrow{a} + \overrightarrow{b}$

(2) \overrightarrow{EB}

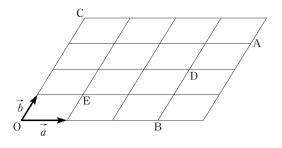
[\mathbf{m}] $\overrightarrow{\mathrm{EB}} = 2\overrightarrow{\mathrm{EO}} = 2\overrightarrow{\mathrm{FA}} = -2\overrightarrow{\mathrm{AF}} = -2\overrightarrow{\mathrm{b}}$

(3) FD

[M] $\overrightarrow{FD} = \overrightarrow{FC} + \overrightarrow{CD} = 2\overrightarrow{AB} + \overrightarrow{AF} = 2\overrightarrow{a} + \overrightarrow{b}$

技

f 右の図で,次 のベクトルを, a, bを用いて 表しなさい。



(1) \overrightarrow{OA}

 $[\mathbf{A}] \qquad \overrightarrow{OA} = 4\overrightarrow{a} + 3\overrightarrow{b}$

(2) BC

[解] $\overrightarrow{BC} = -3\vec{a} + 4\vec{b}$

(3) <u>DE</u>

[解] $\overrightarrow{DE} = -2\vec{a} - \vec{b}$