1節 三角関数

一般角

私たちの身のまわりには、時計の針や観覧車など、回転運動するものがいろいろ あります。ここでは、ある点を中心とした回転の量について学びます。

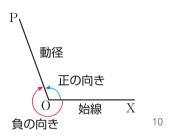
平面上で、点Oを中心として半直線 OP が回転するとき この半直線 OP を 動径

その回転のはじめの位置を示す半直線 OX を 始線 という。

回転には2つの向きがあり

時計の針の回転と逆の向きを正の向き 時計の針の回転と同じ向きを負の向き

とする。



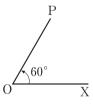
角を回転の量としてとらえると、360°よりも大きい角や、

 -60° などの負の角も考えることができる。このように、 拡張して考えた角を一般角という。

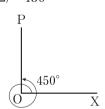
15

●一般角の動径 OP を図示してみよう。

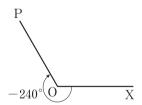
例1 (1) 60°



 $(2) 450^{\circ}$

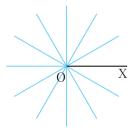


(3) -240°

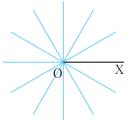


問1 例1にならって、次の角の動径 OP を図示しなさい。

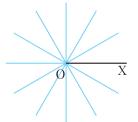
 $(1) 150^{\circ}$



(2) 420°

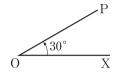


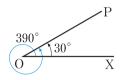
 $(3) -480^{\circ}$

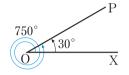


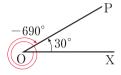
動径の表す一般角

390°. 750°. -690°の動径の位置は、30°の動径の位置と 同じである。









ここで

10

 $390^{\circ} = 30^{\circ} + 360^{\circ} \times 1$ $750^{\circ} = 30^{\circ} + 360^{\circ} \times 2$ $-690^{\circ} = 30^{\circ} + 360^{\circ} \times (-2)$

と表すことができる。

一般に、次のことがいえる。

動径の表す一般角

角αの動径の表す一般角は

 $\alpha + 360^{\circ} \times n$

(n は整数)

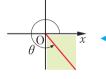
第1象限の角という。ほかの象限についても同様である。

第1象限の角

第2象限の角

第3象限の角

第4象限の角

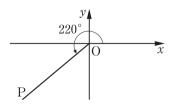


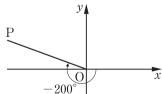
動径が座標軸上となる0°. 90°, 180°, 270° などの角 は、どの象限にも含まれ ない。

角が第何象限の角であるか調べてみよう。

例2 (1) 220° は第3象限の角である。

(2) -200° は第 2 象限の角である。





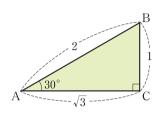
- 問2 次の角は、第何象限の角であるか答えなさい。
 - (1) 380°

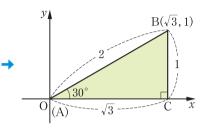
 $(2) -750^{\circ}$

2 三角関数

数学 I では、 $0^{\circ} \le \theta \le 180^{\circ}$ の範囲の三角比について学びました。ここでは、一般角に拡張して三角比を考えます。

30°の三角比の値は、次のように座標を使って 考えることができる。





このとき,座標を使うと

$$\sin 30^{\circ} = \frac{1}{2} = \frac{B \mathcal{O} y$$
座標 OB

$$\cos 30^{\circ} = \frac{\sqrt{3}}{2} = \frac{B \mathcal{O} x$$
 座標

$$\tan 30^{\circ} = \frac{1}{\sqrt{3}} = \frac{B \mathcal{O} y \underline{\phi} \underline{\phi}}{B \mathcal{O} x \underline{\phi} \underline{\phi}}$$

とみることができる。

このことを用いて、一般角 θ の三角比を考えてみよう。

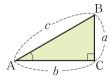
右の図のように、座標平面上でx軸の正の部分を始線とし、一般角 θ の動径上に OP = r となる点Pをとり、その座標を(x, y)とするとき

$$\sin \theta = \frac{y}{r}$$
, $\cos \theta = \frac{x}{r}$, $\tan \theta = \frac{y}{x}$

と定める。これらの値は、長さrに関係なく、 θ の大きさによって定まるから θ の関数である。

 $\sin \theta$, $\cos \theta$, $\tan \theta \in \theta$ の **三角関数** という。

$$\sin \theta = \frac{y}{r}, \quad \cos \theta = \frac{x}{r}, \quad \tan \theta = \frac{y}{x}$$



5

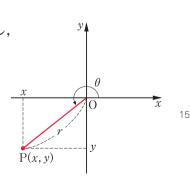
10

$$\sin A = \frac{a}{c}$$

$$\cos A = \frac{b}{c}$$

$$\tan A = \frac{a}{h}$$

→ 巻末 いままでに学んだこと ⑬ 三角比



 $\operatorname{tan}\theta$ は、x=0 となる 20 ような θ に対しては定義 されない。

般角の三角関数の値を求めてみよう。

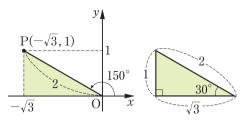
5

10

15

例3 (1) 150° の動径上に OP = 2 となる点Pをとると.

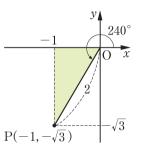
$$P(-\sqrt{3}, 1)$$
 であるから $\sin 150^\circ = \frac{y}{r} = \frac{1}{2}$ $\cos 150^\circ = \frac{x}{r} = \frac{-\sqrt{3}}{2} = -\frac{\sqrt{3}}{2}$

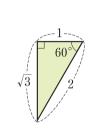


$$\tan 150^\circ = \frac{y}{x} = \frac{1}{-\sqrt{3}} = -\frac{1}{\sqrt{3}}$$

(2) 240° の動径上に OP = 2 となる点 Pをとると、

$$P(-1, -\sqrt{3})$$
 であるから $\sin 240^\circ = \frac{y}{r} = \frac{-\sqrt{3}}{2} = -\frac{\sqrt{3}}{2}$ $\cos 240^\circ = \frac{x}{r} = \frac{-1}{2} = -\frac{1}{2}$ $\tan 240^\circ = \frac{y}{x} = \frac{-\sqrt{3}}{-1} = \sqrt{3}$



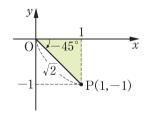


(3) -45° の動径上に OP = $\sqrt{2}$ となる点Pを とると、P(1, -1) であるから

$$\sin(-45^\circ) = \frac{y}{r} = \frac{-1}{\sqrt{2}} = -\frac{1}{\sqrt{2}}$$

$$\cos(-45^\circ) = \frac{x}{r} = \frac{1}{\sqrt{2}}$$

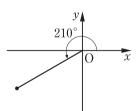
$$\tan(-45^\circ) = \frac{y}{r} = \frac{-1}{1} = -1$$

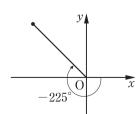


問3 θ が次の角のとき、 $\sin\theta$ 、 $\cos\theta$ 、 $\tan\theta$ の値を求めなさい。

(2) -225°

 $(1) 210^{\circ}$





•	象限	1	2	3	4	
	$\sin \theta$	+	+	_	_	
	$\cos \theta$	+	_	_	+	
	$\tan \theta$	+	_	+	_	

3 三角関数の相互関係

一般角 θ の $\sin \theta$, $\cos \theta$, $\tan \theta$ の間に成り立つ相互関係を考えます。

原点を中心とする半径 1 の円を **単位円** という。 角 θ の動径と単位円との交点を P(x, y) とすると, 80 ページの三角関数の定義により

$$\sin\theta = \frac{y}{r} = \frac{y}{1} = y$$

$$\cos\theta = \frac{x}{r} = \frac{x}{1} = x$$

このとき,点Pの座標(x, y)は, $(\cos \theta, \sin \theta)$ である。 このことを用いて, $\sin \theta$, $\cos \theta$, $\tan \theta$ の間に 成り立つ関係について考えてみよう。

$$\tan \theta = \frac{y}{x} \ \sharp \ \mathcal{D}$$

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

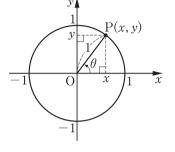
さらに、点Pが単位円の周上にあることから

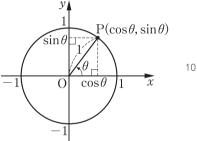
$$x^2 + y^2 = 1$$

$$(\cos\theta)^2 + (\sin\theta)^2 = 1$$

よって $\sin^2\theta + \cos^2\theta = 1$

このように、一般角の三角関数についても、数学 I で 学んだ三角比と同様に、次の公式が成り立つ。





- ▼原点を中心とする半径 1 15
 の円の方程式は
 - $x^2 + y^2 = 1$
- $<(\sin\theta)^2$ は $\sin^2\theta$, $(\cos\theta)^2$ は $\cos^2\theta$ と書く。

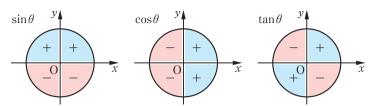
三角関数の相互関係

[1]
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$[2] \quad \sin^2\theta + \cos^2\theta = 1$$

20

 $\sin \theta$, $\cos \theta$, $\tan \theta$ の値の正負は, θ がどの象限の角であるかによって定まり、図示すると次のようになる。



例題 1

10

15

 θ が第 3 象限の角で、 $\cos\theta = -\frac{3}{5}$ のとき、 $\sin\theta$ 、 $\tan\theta$ の値を求めなさい。

$$\sin^2 \theta = 1 - \cos^2 \theta$$
$$= 1 - \left(-\frac{3}{5}\right)^2$$
$$= \frac{16}{25}$$

 θ が第3象限の角であるから $\sin \theta < 0$

したがって

$$\sin \theta = -\sqrt{\frac{16}{25}}$$

$$= -\frac{4}{5}$$

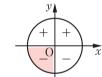
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$= \left(-\frac{4}{5}\right) \div \left(-\frac{3}{5}\right)$$

$$= \left(-\frac{4}{5}\right) \times \left(-\frac{5}{3}\right)$$

 $=\frac{4}{3}$

⋖ sin θ の符号



問4 次の問に答えなさい。

- (1) θ が第 4 象限の角で、 $\cos \theta = \frac{1}{3}$ のとき、 $\sin \theta$ 、 $\tan \theta$ の値を求めなさい。
- 20 (2) θ が第 3 象限の角で、 $\sin \theta = -\frac{5}{13}$ のとき、 $\cos \theta$ 、 $\tan \theta$ の値を求めなさい。

- ◀ 1 つの三角関数の値から ほかの 2 つの三角関数の 値を求めることができる。
- →p.91 復習問題2

4 三角関数のグラフ

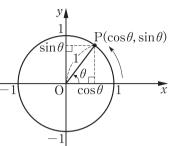
三角関数の値は角 θ の値によって変化します。ここでは、三角関数のグラフをかいて、その特徴を学びます。

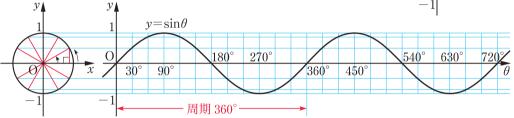
$y = \sin \theta$ のグラフ

単位円と角 θ の動径との交点Pの座標は、 $(\cos \theta, \sin \theta)$ である。すなわち、点Pのy座標が $\sin \theta$ であることから

$$y = \sin \theta$$

のグラフは、次のようになり、 $-1 \le \sin \theta \le 1$ である。





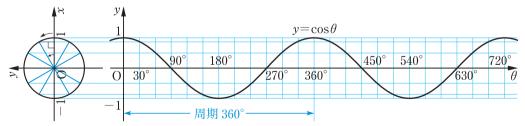
 $y=\sin\theta$ のグラフは、 360° ごとに同じ形をくり返している。 このことを、 $y=\sin\theta$ は 360° を **周期** とする **周期関数** であるという。

$y = \cos \theta$ のグラフ

 $y = \sin \theta$ のグラフの場合と同様に考えると、点Pの x 座標が $\cos \theta$ であることから

$$y = \cos \theta$$

のグラフは、次のようになり、 $-1 \le \cos \theta \le 1$ である。



 $y = \cos \theta$ も 360° を周期とする周期関数である。

 $y = \cos \theta$ のグラフは, $y = \sin \theta$ のグラフを θ 軸方向に -90° だけ平行 移動したものである。

84 3章 三角関数

10

5

15

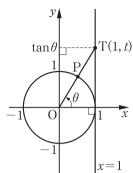
$y = \tan \theta$ のグラフ

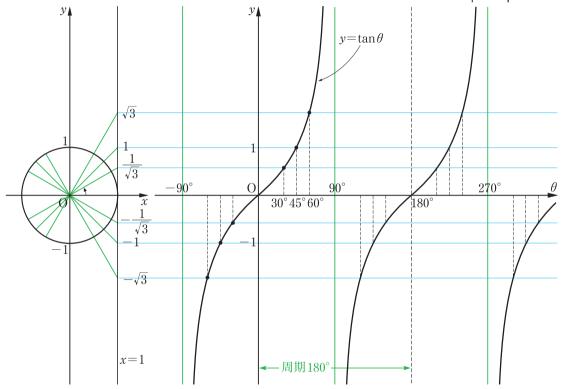
右の図で、角 θ の動径をOPとする。

直線 OP と直線 x = 1 との交点を T(1, t) とすれば

$$\tan \theta = \frac{t}{1} = t$$

すなわち、点Tのy座標が $\tan \theta$ に等しい。これより、 $y = \tan \theta$ のグラフは次のようになり、 $\tan \theta$ はすべての実数値をとることがわかる。





 $v = \tan \theta$ は 180° を周期とする周期関数である。

 $y = \tan \theta$ のグラフは y 軸方向にどこまでものびる曲線で、

10 θ の値が 90° に近づくと,直線 $\theta = 90^\circ$ に限りなく近づいていく。このとき,直線 $\theta = 90^\circ$ をグラフの**漸近線** という。なお,直線 $\theta = -90^\circ$, $\theta = 270^\circ$, $\theta = -270^\circ$, $\theta = 450^\circ$, $\theta = -450^\circ$ なども $y = \tan\theta$ のグラフの漸近線である。

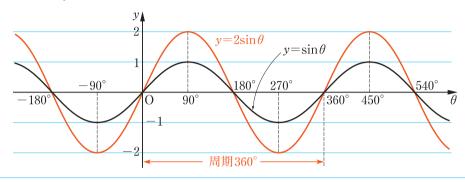
tan 90°, tan (− 90°),
 tan 270°, tan (− 270°),
 tan 450°, tan (− 450°)
 などの値はない。

いろいろな三角関数のグラフ(1)

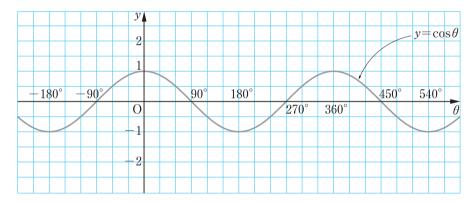
- y 軸方向に拡大・縮小した三角関数のグラフをかいてみよう。
- 例4 $y = 2\sin\theta$ のグラフは、 $y = \sin\theta$ のグラフを $\checkmark y = n\sin\theta$ のグラフは、 y軸方向に2倍したものである。

周期は $v = \sin \theta$ の周期と同じ 360° である。

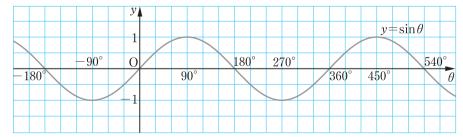
 $y = \sin \theta$ のグラフを v軸方向にn倍したもの である。



問5 $y=2\cos\theta$ のグラフをかきなさい。また、その周期を \rightarrow p.91 復習問題③ 答えなさい。



問6 $y = \frac{1}{2}\sin\theta$ のグラフをかきなさい。また,その周期を y軸方向に $\frac{1}{2}$ 倍する。 答えなさい。



いろいろな三角関数のグラフ(2)

5

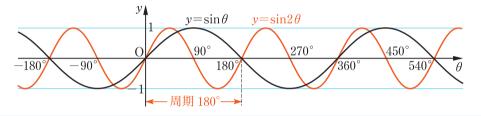
ullet θ 軸方向に拡大・縮小した三角関数のグラフをかいてみよう。

例5 $v = \sin 2\theta$ のグラフをかいてみよう。

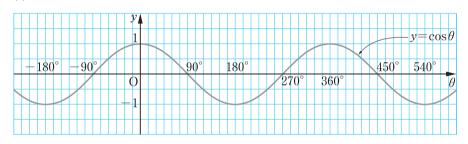
θ	0°	15°	30°	45°	60°	75°	90°	•••	150°	•••	180°	•••
2θ	0°	30°	60°	90°	120°	150°	180°	•••	300°	•••	360°	
$\sin 2\theta$	0	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	0	•••	$-\frac{\sqrt{3}}{2}$	•••	0	•••

上の表から、 $y = \sin 2\theta$ のグラフは下の図のように $\triangleleft y = \sin n\theta$ のグラフは、 なり、これは、 $y = \sin \theta$ のグラフを θ 軸方向に $\frac{1}{2}$ 倍 したものである。周期は $y = \sin \theta$ の周期 360° の $\frac{1}{2}$ 倍で, 180° である。

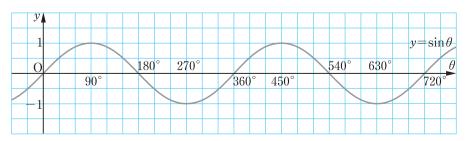
 $y = \sin \theta$ のグラフを θ 軸 方向に $\frac{1}{2}$ 倍したもので, 周期は $\frac{360^{\circ}}{n}$ である。



- **問7** $y = \cos 2\theta$ のグラフをかきなさい。また、その周期を 答えなさい。
- →p.91 復習問題4



- **問8** $y = \sin \frac{\theta}{2}$ のグラフをかきなさい。また,その周期を 答えなさい。
- θ 軸方向に 2 倍する。



5 三角関数の性質

三角関数が周期関数であることはすでに学びました。ここでは,さらにいくつかの

$\theta + 360^{\circ} \times n$ の三角関数

角 $\theta + 360^{\circ} \times n$ の動径と角 θ の動径は一致する。 よって、次の公式が成り立つ。ただし、n は整数である。

 $\theta + 360^{\circ} \times n$ の三角関数

$$\sin(\theta + 360^{\circ} \times n) = \sin \theta$$
$$\cos(\theta + 360^{\circ} \times n) = \cos \theta$$

$$\tan(\theta + 360^{\circ} \times n) = \tan\theta$$

 $\mathbf{\theta} + 360^{\circ} \times n$ の三角関数の公式を利用して、三角関数の値を求めてみよう。

例 6 (1) $\sin 390^\circ = \sin(30^\circ + 360^\circ \times 1) = \sin 30^\circ = \frac{1}{2}$

(2)
$$\cos 765^{\circ} = \cos(45^{\circ} + 360^{\circ} \times 2) = \cos 45^{\circ} = \frac{1}{\sqrt{2}}$$

問9 次の三角関数の値を求めなさい。

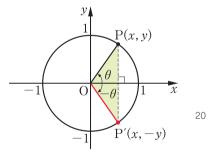
- $(1) \sin 405^{\circ}$
- (2) $\cos 750^{\circ}$ (3) $\tan 420^{\circ}$

$-\theta$ の三角関数

右の図で、角 $-\theta$ の動径 OP'は、角 θ の動径 OP と x軸に関して対称であるから、点Pの座標を(x, y)と すれば、点 P' の座標は (x, -v) となる。

よって
$$\sin(-\theta) = -y = -\sin\theta$$

 $\cos(-\theta) = x = \cos\theta$
 $\tan(-\theta) = \frac{-y}{x} = -\frac{y}{x} = -\tan\theta$



5

10

15

$-\theta$ の三角関数

$$\sin(-\theta) = -\sin\theta$$

$$\tan(-\theta) = -\tan\theta$$

$$\cos(-\theta) = \cos\theta$$

ullet $-\theta$ の三角関数の公式を利用して,三角関数の値を求めてみよう。

例7 (1)
$$\sin(-45^\circ) = -\sin 45^\circ = -\frac{1}{\sqrt{2}}$$

(2)
$$\cos(-60^\circ) = \cos 60^\circ = \frac{1}{2}$$

間10 次の三角関数の値を求めなさい。

(1) $\sin(-60^\circ)$ (2) $\cos(-30^\circ)$ (3) $\tan(-45^\circ)$

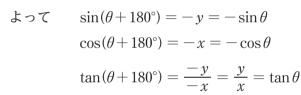
5

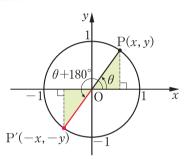
20

θ+180° の三角関数

右の図で、角 $\theta+180^{\circ}$ の動径 OP' は、角 θ の 動径 OP を原点のまわりに 180° 回転したものである。 点Pと点P'は原点に関して対称であるから.

10 点Pの座標を(x, v)とすれば、点 P'の座標は (-x, -v) となる。





$$\sin(\theta + 180^{\circ}) = -\sin\theta$$

$$\cos(\theta + 180^{\circ}) = -\cos\theta$$

$$\tan(\theta + 180^{\circ}) = \tan\theta$$

$\theta + 180^{\circ}$ の三角関数の公式を利用して、三角関数の値を求めてみよう。

例8 (1)
$$\sin 210^\circ = \sin(30^\circ + 180^\circ) = -\sin 30^\circ = -\frac{1}{2}$$

(2)
$$\cos 240^\circ = \cos(60^\circ + 180^\circ) = -\cos 60^\circ = -\frac{1}{2}$$

間11 次の三角関数の値を求めなさい。

- (1) $\sin 240^{\circ}$ (2) $\cos 225^{\circ}$ (3) $\tan 210^{\circ}$

角関数を含む方程式

ここでは、 $\sin \theta$ や $\cos \theta$ の三角関数の値から角度を求めることを学びます。

 $0^{\circ} \leq \theta < 360^{\circ}$ のとき、次の等式を満たす θ の値を 求めなさい。

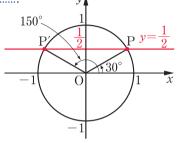
$$(1) \quad \sin \theta = \frac{1}{2}$$

(1)
$$\sin \theta = \frac{1}{2}$$
 (2) $\cos \theta = -\frac{1}{2}$

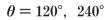
10

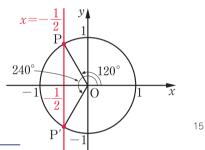
20

解 (1) 単位円周上で,y座標が $\frac{1}{2}$ となる点は, 右の図の P. P'の 2 点である。 動径 OP. OP' の表す角 θ は. $0^{\circ} \leq \theta < 360^{\circ}$ の範囲では

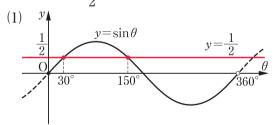


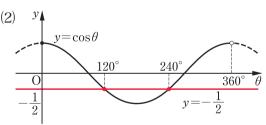
(2) 単位円周上で、x座標が $-\frac{1}{2}$ となる点は、 右の図の P, P'の 2 点である。 動径 OP, OP'の表す角 θ は、 $0^{\circ} \leq \theta < 360^{\circ}$ の範囲では





例題 1 の解は、(1) 関数 $y = \sin \theta$ のグラフと直線 $y = \frac{1}{2}$ が 交わる θ の値, (2) 関数 $y = \cos \theta$ のグラフと 直線 $y = -\frac{1}{2}$ が交わる θ の値を示している。



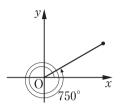


問1 $0^{\circ} \leq \theta < 360^{\circ}$ のとき、次の等式を満たす θ の値を 求めなさい。

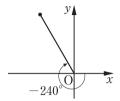
$$(1) \quad \sin \theta = \frac{\sqrt{3}}{2}$$

(1)
$$\sin \theta = \frac{\sqrt{3}}{2}$$
 (2)
$$\cos \theta = -\frac{1}{\sqrt{2}}$$

復



(2) -240°

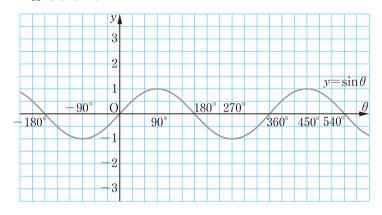


三角関数の相互関係

⇔p.83 例題 1

三角関数 ←p.81 例3

- □2 次の問に答えなさい。
 - (1) θ が第 4 象限の角で、 $\sin\theta = -\frac{4}{5}$ のとき、 $\cos\theta$ 、 $\tan\theta$ の値を求めなさい。
 - (2) θ が第 3 象限の角で、 $\cos\theta = -\frac{1}{3}$ のとき、 $\sin\theta$ 、 $\tan\theta$ の値を求めなさい。
- $y = 3\sin\theta$ のグラフをかきなさい。また,その周期を 6 答えなさい。

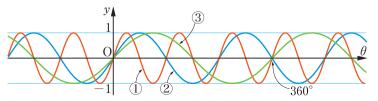


グラフ(1)

←p.86 例 4

いろいろな三角関数の

4 y = sin 3θ のグラフは下の図の ①, ②, ③ のどれか答えなさい。



いろいろな三角関数の グラフ(2)

⇔p.87 例 5