4章·1節 指数関数

- ① 指数の拡張
- ② 累乗根

組	番号	名 前

1	次の	をうめなさい。	ÆΓ
	火の	1をりめなさい。	籶

(1) $a \neq 0$ で、n が正の整数のとき

 $a^0 = \square$, $a^{-n} = \frac{1}{a \square}$

(2) a>0 で、m、n が正の整数のとき

 $a^{\frac{m}{n}} = \left(\frac{\square}{\sqrt{a}} \right)^{\square} = \frac{\square}{\sqrt{a}}$

- (3) a>0, b>0 で, p, q が分数や整数のとき
 - [1] $a^p \times a^q = a^{\square}$
 - $[2] a^{p} \div a^{q} = a^{\square}$
 - $[3] \qquad (a^{p})^{q} = a^{\square}$
 - $[4] \qquad (ab)^p = a \square b \square$

2 次の値を求めなさい。 世

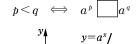
- (1) 4^{-3}
- (2) $\left(\frac{1}{3}\right)^{-2}$

3 次の計算をしなさい。 技

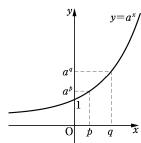
- (1) $7^{-2} \times 7^{5}$
- (2) $2^3 \div 2^{-2}$
- 4 次の計算を行い、結果を負の整数の指数を用いないで表しなさい。ただし、a>0、b>0とする。因
- (1) $a^{-3} \times a^{-4}$
- (2) $a^4 \div a^{-5}$
- (3) $(a^{-3})^{-2}$
- (4) $(a^2b^{-4})^{-3}$

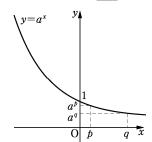
5	次の値を求めなさい。	技
J	外の個を水のなさい。	1X

- (1) $\sqrt[4]{81}$
- (2) $16^{-\frac{3}{2}}$

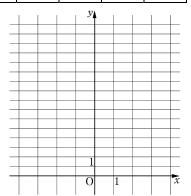

- (1) $\sqrt[3]{5} \times \sqrt[3]{2}$
- (2) $\sqrt[4]{6} \div \sqrt[4]{2}$
- (3) $\sqrt[6]{4} \times \sqrt[6]{16}$
- (4) $(\sqrt[6]{27})^2$
- ightharpoonup次の計算をしなさい。ただし,a>0とする。因
- (1) $a^{\frac{1}{4}} \times a^{\frac{3}{4}}$
- (2) $\sqrt[3]{2^5} \times \sqrt[6]{4}$
- (3) $\sqrt[3]{32} \div \sqrt[6]{16}$

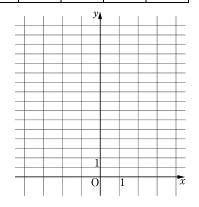
4章·1節 指数関数


③ 指数関数とそのグラフ


- 番号 組 名 前
- **1** 指数関数 $y=a^x$ のグラフの性質について、次の をうめなさい。 **3** 次の数を小さい順に並べなさい。 **b**

- (1) a を1 以外の の数とするとき, $y=a^x$ で表される関数を, aを とするx の 関数という。
- (2) 2点(0,), (1,)を通る。
- (3) y 0 の範囲にある。
- (4) x 軸がグラフの 線となる。
- (5) a>1 のとき、x が増加するとyも しする。 0 < a < 1 のとき、x が増加するとy は _____ する。
- (6) (i) a>1のとき
- (ii) 0<a<1のとき




- 2 下の表を完成し、指数関数のグラフをかきなさい。 因
- (1) $y = 4^x$

x	•••	-2	-1	0	1	2	
$y=4^x$							

 $(2) \quad y = \left(\frac{1}{4}\right)^x$

	x	•••	-2	-1	0	1	2	•••
3	$y = \left(\frac{1}{4}\right)^x$::						

- (1) $2^{\frac{6}{5}}$, $2^{-\frac{1}{2}}$, $2^{\frac{3}{4}}$

(2) $\left(\frac{1}{2}\right)^{-1}$, $\left(\frac{1}{2}\right)^{\frac{1}{3}}$, $\left(\frac{1}{2}\right)^{2}$

- 4 次の方程式を解きなさい。技
- (1) $5^x = 125$
- (2) $7^x = 1$
- (3) $3^x = \frac{1}{81}$
- (4) $8^x = 32$

4章・1節 指数関数

- ① 指数の拡張
- ② 累乗根

組	番号	名 前

1 次のをうめなさい。知

(1) $a \neq 0$ で、n が正の整数のとき

$$a^0 = \boxed{1}$$
, $a^{-n} = \frac{1}{a \boxed{n}}$

(2)
$$a > 0$$
 で、 m 、 n が正の整数のとき
$$a^{\frac{m}{n}} = \left(\frac{\mathbf{n}}{\sqrt{a}}\right)^{\mathbf{m}} = \frac{\mathbf{n}}{\sqrt{a}} \sqrt{a^{\mathbf{m}}}$$

- (3) a>0, b>0 で, p, q が分数や整数のとき
 - $[1] \qquad a^{p} \times a^{q} = a^{\boxed{p+q}}$
 - $[2] \qquad a^{p} \div a^{q} = a^{\boxed{p-q}}$
 - $[3] \qquad (a^{p})^{q} = a^{\boxed{pq}}$
 - [4] $(ab)^p = a^{p} b^{p}$

2 次の値を求めなさい。技

(1) 4^{-3}

[解]
$$4^{-3} = \frac{1}{4^3} = \frac{1}{64}$$

(2)
$$\left(\frac{1}{3}\right)^{-2}$$
 [解] $\left(\frac{1}{3}\right)^{-2} = (3^{-1})^{-2} = 3^{(-1)\times(-2)} = 3^2 = 9$

3 次の計算をしなさい。技

(1) $7^{-2} \times 7^{5}$

[解]
$$7^{-2} \times 7^{5} = 7^{-2+5} = 7^{3} = 343$$

(2) $2^3 \div 2^{-2}$

[解]
$$2^3 \div 2^{-2} = 2^{3-(-2)} = 2^5 = 32$$

- **4** 次の計算を行い、結果を負の整数の指数を用いないで表しなさい。ただし、a>0、b>0とする。**医**
- (1) $a^{-3} \times a^{-4}$

[解]
$$a^{-3} \times a^{-4} = a^{-3+(-4)} = a^{-7} = \frac{1}{a^7}$$

(2) $a^4 \div a^{-5}$

[解]
$$a^4 \div a^{-5} = a^{4-(-5)} = a^9$$

(3) $(a^{-3})^{-2}$

[解]
$$(a^{-3})^{-2} = a^{-3 \times (-2)} = a^{6}$$

(4) $(a^2b^{-4})^{-3}$

[解]
$$(a^2b^{-4})^{-3} = (a^2)^{-3}(b^{-4})^{-3} = a^{2 \times (-3)}b^{-4 \times (-3)} = a^{-6}b^{12} = \frac{b^{12}}{a^6}$$

5 次の値を求めなさい。 技

(1) $\sqrt[4]{81}$

[解]
$$\sqrt[4]{81} = \sqrt[4]{3^4} = 3$$

(2) $16^{-\frac{3}{2}}$

[解]
$$16^{-\frac{3}{2}} = \frac{1}{16^{\frac{3}{2}}} = \frac{1}{(\sqrt[2]{16})^3} = \frac{1}{4^3} = \frac{1}{64}$$

6 次の計算をしなさい。技

(1) $\sqrt[3]{5} \times \sqrt[3]{2}$

[解]
$$\sqrt[3]{5} \times \sqrt[3]{2} = \sqrt[3]{5 \times 2} = \sqrt[3]{10}$$

(2) $\sqrt[4]{6} \div \sqrt[4]{2}$

[解]
$$\sqrt[4]{6} \div \sqrt[4]{2} = \sqrt[4]{\frac{6}{2}} = \sqrt[4]{3}$$

(3) $\sqrt[6]{4} \times \sqrt[6]{16}$

[解]
$$\sqrt[6]{4} \times \sqrt[6]{16} = \sqrt[6]{4 \times 16} = \sqrt[6]{64} = \sqrt[6]{2^6} = 2$$

(4) $(\sqrt[6]{27})^2$

[解]
$$(\sqrt[6]{27})^2 = \sqrt[6]{27^2} = \sqrt[6]{(3^3)^2} = \sqrt[6]{3^6} = 3$$

次の計算をしなさい。ただし、a>0とする。因

(1) $a^{\frac{1}{4}} \times a^{\frac{3}{4}}$

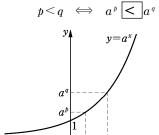
[解]
$$a^{\frac{1}{4}} \times a^{\frac{3}{4}} = a^{\frac{1}{4} + \frac{3}{4}} = a$$

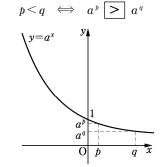
(2) $\sqrt[3]{2^5} \times \sqrt[6]{4}$

$$[\text{MG}] \qquad \sqrt[3]{2^5} \times \sqrt[6]{4} = 2^{\frac{5}{3}} \times \sqrt[6]{2^2} = 2^{\frac{5}{3}} \times 2^{\frac{2}{6}} = 2^{\frac{5}{3}} \times 2^{\frac{1}{3}} = 2^{\frac{5}{3} + \frac{1}{3}} = 2^2 = 4$$

(3) $\sqrt[3]{32} \div \sqrt[6]{16}$

[解]
$$\sqrt[3]{32} \div \sqrt[6]{16} = \sqrt[3]{2^5} \div \sqrt[6]{2^4} = 2^{\frac{5}{3}} \div 2^{\frac{4}{6}} = 2^{\frac{5}{3}} \div 2^{\frac{2}{3}} = 2^{\frac{5}{3} - \frac{2}{3}} = 2$$


4章·1節 指数関数

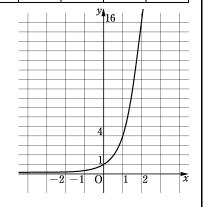

③ 指数関数とそのグラフ

- 組 番号 名 前
- ¶ 指数関数 $y=a^x$ のグラフの性質について、次の をうめなさい。

知

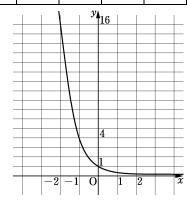
- (1) a を1 以外の \mathbf{E} の数とするとき、 $y=a^x$ で表される関数を、a を \mathbf{E} とするx の 指数 関数という。
- (2) 2点(0, 1), (1, **a**)を通る。
- (3) y > 0 の範囲にある。
- (4) x 軸がグラフの|**漸近**|線となる。
- (5) a>1 のとき, x が増加するとy も 増加 する。0<a<1 のとき, x が増加するとyは 減少 する。
- (6) (i) a>1のとき
- (ii) 0<a<1のとき

- 2 下の表を完成し、指数関数のグラフをかきなさい。
 西
- (1) $y = 4^x$


х	•••	-2	-1	0	1	2	•••
$y=4^x$	•••	1/16	$\frac{1}{4}$	1	4	16	•••

[角译] $4^{-2} = \frac{1}{4^2} = \frac{1}{16}$ $4^{-1} = \frac{1}{4}$

 $4^{-1} = \frac{1}{4}$


 $4^1 = 4$

 $4^2 = 16$

 $(2) \quad y = \left(\frac{1}{4}\right)^x$

x	•••	-2	-1	0	1	2	•••
$y = \left(\frac{1}{4}\right)^x$		16	4	1	1/4	1 16	

- 3 次の数を小さい順に並べなさい。 因
- (1) $2^{\frac{6}{5}}$, $2^{-\frac{1}{2}}$, $2^{\frac{3}{4}}$

[解] 指数を小さい順に並べると, $-\frac{1}{2} < \frac{3}{4} < \frac{6}{5}$ 底 2 は 1 より大きいから

 $2^{-\frac{1}{2}} < 2^{\frac{3}{4}} < 2^{\frac{6}{5}}$

したがって

 $2^{-\frac{1}{2}}$, $2^{\frac{3}{4}}$, $2^{\frac{6}{5}}$

- (2) $\left(\frac{1}{2}\right)^{-1}$, $\left(\frac{1}{2}\right)^{\frac{1}{3}}$, $\left(\frac{1}{2}\right)^{2}$
- [解] 指数を小さい順に並べると, $-1<\frac{1}{3}<2$

底 $\frac{1}{2}$ は1より小さいから

 $\left(\frac{1}{2}\right)^{-1} > \left(\frac{1}{2}\right)^{\frac{1}{3}} > \left(\frac{1}{2}\right)^{2}$

したがって

 $\left(\frac{1}{2}\right)^2$, $\left(\frac{1}{2}\right)^{\frac{1}{3}}$, $\left(\frac{1}{2}\right)^{-1}$

- 4 次の方程式を解きなさい。 技
- (1) $5^x = 125$

[解] 125=53 より

 $5^x = 5^3$

よって **x**=3

(2) $7^x = 1$

[解] 1=70より

 $7^x = 7^0$

よって x=0

(3) $3^x = \frac{1}{81}$

 $[\text{AF}] \qquad \frac{1}{81} = \frac{1}{3^4} = 3^{-4} \text{ fm}$

 $3^x = 3^{-4}$

よって x=-4

(4) $8^x = 32$

[解] $8^x = (2^3)^x = 2^{3x}$, $32 = 2^5$ より

 $2^{3x} = 2^5$

よって 3*x*=5

 $1 - x = \frac{5}{3}$