3章·1節 三角関数

- ① 一般角
- ④ 三角関数の性質
- ② 弧度法
- ③ 三角関数

1 次の をうめよ。知	1	次の		を	う	め	よ。	知
-------------	---	----	--	---	---	---	----	---

- (2) 弧度法を用いると、角 α の動径が表す一般角 θ は、次のように表される。

θ= (n は整数)

(3) 半径r, 中心角 θ の扇形の弧の長さをl, 面積をSとすると

l = _____, S =

- (4) $\sin(-\theta) =$, $\sin(\theta + \pi) =$. $\cos(-\theta) =$, $\cos(\theta + \pi) =$. $\tan(-\theta) =$, $\tan(\theta + \pi) =$
- $\mathbf{2}$ 次の扇形の弧の長さlと面積Sを求めよ。 \mathbf{b}
- (1) 半径 3, 中心角 $\frac{3}{4}\pi$
- (2) 半径 4, 中心角 210°
- ϑ が次の角のとき、 $\sin\!\theta$ 、 $\cos\!\theta$ 、 $\tan\!\theta$ の値を求めよ。 **技**
- (1) $\frac{5}{4}\pi$

(2) $-\frac{5}{3}\pi$

組	番号	名 前

4 次の値を求めよ。技

(1) θ が第 4 象限の角で、 $\sin \theta = -\frac{1}{4}$ のときの $\cos \theta$ 、 $\tan \theta$

(2) θ が第3象限の角で、 $\tan\theta=3$ のときの $\sin\theta$ 、 $\cos\theta$

- 5 次の値を求めよ。技
- (1) $\sin\theta + \cos\theta = -\frac{2}{3} \mathcal{O} \succeq \mathcal{E} \mathcal{O} \sin\theta \cos\theta$
- (2) $\sin\theta\cos\theta = -\frac{1}{3} \mathcal{O} \succeq \mathcal{E} \mathcal{O} \sin\theta + \cos\theta$

6 次の等式が成り立つことを証明せよ。 考

$$\frac{\sin\theta}{1+\cos\theta} + \frac{\sin\theta}{1-\cos\theta} = \frac{2}{\sin\theta}$$

3章·1節 三角関数

- ⑤ 三角関数のグラフ
- ⑥ 三角関数を含む方程式・不等式

組	番号	名前

1	次の	2	とる	めよ。	左Π
	1/\(\frac{1}{2}\)	1	エ ノ	めょ。	ᄱ

- (1) $y = \sin\theta$ のグラフの形の曲線を という。
- (2) グラフがある直線に限りなく近づくとき、その直線のことをグラフの という。
- (3) 関数 y = f(x) について、0 でない定数 p があって、等式 f(x+p) = f(x) がすべての x について成り立つとき、f(x) を、p を とする という。
- (4) 関数 $y=\sin\theta$, $y=\cos\theta$ の周期は であり、関数 $y=\tan\theta$ の 周期は である。
- (5) 関数 $y = \cos\theta$ のグラフは に関して対称であり、 $y = \sin\theta$ のグラフは に関して対称である。また、関数 $y = \tan\theta$ の グラフは に関して対称である。
- 2 次の関数のグラフをかけ。また、その周期を求めよ。 世
- (1) $y = 3\sin\theta$

(2)		θ
(Z)	$y = \cos^2 \theta$	2

(3)
$$y = \tan\left(\theta - \frac{\pi}{2}\right)$$

$$\mathbf{3}$$
 $0 \le \theta < 2\pi$ のとき、次の方程式を満たす θ の値を求めよ。 \mathbf{b}

$$(1) \quad \sin\theta = -\frac{1}{\sqrt{2}}$$

(2)
$$\cos\theta = \frac{1}{2}$$

(3)
$$\tan\theta = -\frac{1}{\sqrt{3}}$$

4 $0 \le \theta < 2\pi$ のとき,方程式 $\cos\left(\theta + \frac{\pi}{4}\right) = \frac{\sqrt{3}}{2}$ を満たす θ の値を求めよ。**因**

5 $0 \le \theta < 2\pi$ のとき,不等式 $\cos \theta < -\frac{1}{\sqrt{2}}$ を満たす θ の値の範囲を求めよ。**因**

3 章・1 節 三角関数

- ① 一般角
- ④ 三角関数の性質
- ② 弧度法
- ③ 三角関数
- 1 次の をうめよ。 知
- (1) 長さ1の弧に対する中心角の大きさを1 ラジアン または1 弧度といい、これを単位とする角の表し方を 弧度法 という。 $180^{\circ} = \boxed{\pi} \quad \exists \vec{v} \vec{r} \vec{v}, \ 1 \ \exists \vec{v} \vec{r} \vec{v} = \boxed{\frac{180}{\pi}}$
- (2) 弧度法を用いると、角 α の動径が表す一般角 θ は、次のように 表される。

$$\theta = \boxed{\alpha + 2n\pi}$$
 (n は整数)

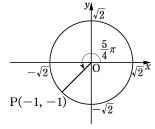
(3) 半径r,中心角 θ の扇形の弧の長さをl,面積をSとすると

$$l = \boxed{r\theta}$$
, $S = \boxed{\frac{1}{2}r^2\theta}$

- (4) $\sin(-\theta) = -\sin\theta$, $\sin(\theta + \pi) = -\sin\theta$ $\cos(-\theta) = \cos\theta$, $\cos(\theta + \pi) = -\cos\theta$ $tan(-\theta) = \boxed{-tan\theta}$, $\tan(\theta + \pi) = \tan \theta$
- $\mathbf{2}$ 次の扇形の弧の長さlと面積Sを求めよ。 \mathbf{b}
- (1) 半径 3, 中心角 $\frac{3}{4}\pi$

[解]
$$l = 3 \times \frac{3}{4}\pi = \frac{9}{4}\pi$$
$$S = \frac{1}{2} \times 3^2 \times \frac{3}{4}\pi = \frac{27}{8}\pi$$

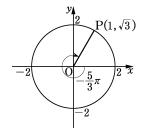
- (2) 半径 4, 中心角 210°
- [解] $210^{\circ} = \frac{7}{6}\pi$ ラジアンであるから $l = 4 \times \frac{7}{6} \pi = \frac{14}{3} \pi$ $S = \frac{1}{2} \times 4^2 \times \frac{7}{6} \pi = \frac{28}{2} \pi$
- θ が次の角のとき、 $\sin\theta$ 、 $\cos\theta$ 、 $\tan\theta$ の値を求めよ。 \mathbf{b}
- (1) $\frac{5}{4}\pi$
- [解] 右の図で、原点 O を中心とする半径 $\sqrt{2}$ の円と $\frac{5}{4}\pi$ の動径の交点 P の座標は (-1, -1) であるから $\sin \frac{5}{4}\pi = \frac{-1}{\sqrt{2}} = -\frac{1}{\sqrt{2}}$ $\cos\frac{5}{4}\pi = \frac{-1}{\sqrt{2}} = -\frac{1}{\sqrt{2}}$



(2) $-\frac{5}{3}\pi$

 $\tan \frac{5}{4} \pi = \frac{-1}{1} = 1$

[解] 右の図で、原点を中心とする半径2の 円と $-\frac{5}{3}\pi$ の動径の交点 P の座標は $(1, \sqrt{3})$ であるから



組	番号	名	前	

次の値を求めよ。技

- (1) θ が第 4 象限の角で、 $\sin\theta = -\frac{1}{4}$ のときの $\cos\theta$ 、 $\tan\theta$
- [β] $\sin^2\theta + \cos^2\theta = 1$ ξ θ $\cos^2\theta = 1 \sin^2\theta = 1 \left(-\frac{1}{4}\right)^2 = \frac{15}{16}$ θ が第4象限の角であるから、 $\cos \theta > 0$ である。

また,
$$\tan\theta = \frac{\sin\theta}{\cos\theta}$$
 より

$$\tan\theta = \frac{-\frac{1}{4}}{\frac{\sqrt{15}}{4}} = -\frac{1}{\sqrt{15}} = -\frac{\sqrt{15}}{15}$$

- (2) θ が第 3 象限の角で、 $\tan\theta = 3$ のときの $\sin\theta$ 、 $\cos\theta$
- $[\text{ MF}] \qquad 1 + \tan^2\!\theta = \frac{1}{\cos^2\!\theta} \quad \text{\sharp \emptyset} \qquad \cos^2\!\theta = \frac{1}{1 + \tan^2\!\theta} = \frac{1}{1 + 3^2} = \frac{1}{10}$ θ が第3象限の角であるから、 $\cos\theta$ <0 である。

よって
$$\cos\theta = -\sqrt{\frac{1}{10}} = -\frac{\sqrt{10}}{10}$$

また,
$$\tan\theta = \frac{\sin\theta}{\cos\theta}$$
 より

$$\sin\theta = \tan\theta\cos\theta = 3 \cdot \left(-\frac{\sqrt{10}}{10}\right) = -\frac{3\sqrt{10}}{10}$$

5 次の値を求めよ。 技

- (1) $\sin\theta + \cos\theta = -\frac{2}{3} \mathcal{O} \succeq \mathcal{E} \mathcal{O} \sin\theta \cos\theta$
- [解] 与えられた式の両辺を2乗すると

$$\sin^2\theta + 2\sin\theta\cos\theta + \cos^2\theta = \frac{4}{9}$$

$$\sin^2\theta + \cos^2\theta = 1$$
 であるから

$$\sin^2\theta + \cos^2\theta = 1$$
 であるから $1 + 2\sin\theta\cos\theta = \frac{4}{9}$

- (2) $\sin\theta\cos\theta = -\frac{1}{3}$ $O \ge \delta \cdot \sin\theta + \cos\theta$
- [解] $(\sin\theta + \cos\theta)^2 = \sin^2\theta + 2\sin\theta\cos\theta + \cos^2\theta$

$$=1+2\cdot\left(-\frac{1}{3}\right)$$
$$=\frac{1}{1}$$

よって
$$\sin\theta + \cos\theta = \pm \sqrt{\frac{1}{3}} = \pm \frac{\sqrt{3}}{3}$$

次の等式が成り立つことを証明せよ。

$$\frac{\sin\theta}{1+\cos\theta} + \frac{\sin\theta}{1-\cos\theta} = \frac{2}{\sin\theta}$$

[証明]
$$(左辺) = \frac{\sin\theta(1-\cos\theta)+\sin\theta(1+\cos\theta)}{(1+\cos\theta)(1-\cos\theta)}$$
$$= \frac{\sin\theta-\sin\theta\cos\theta+\sin\theta+\sin\theta\cos\theta}{1-\cos^2\theta}$$

$$=\frac{2\sin\theta}{\sin^2\theta}$$

3章·1節 三角関数

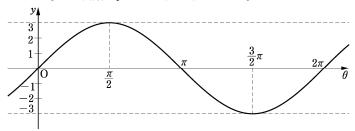
- ⑤ 三角関数のグラフ
- ⑥ 三角関数を含む方程式・不等式

組	番号	名前

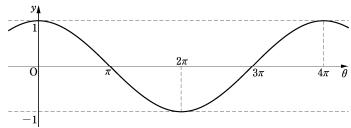
- 1 次の をうめよ。知
- (1) $y = \sin\theta$ のグラフの形の曲線を 正弦曲線 という。
- (2) グラフがある直線に限りなく近づくとき、その直線のことをグラフの**漸近線**という。
- (3) 関数 y=f(x) について、0 でない定数 p があって、等式 f(x+p)=f(x)

がすべてのx について成り立つとき, f(x) を, p を **周期** とする **周期関数** という。

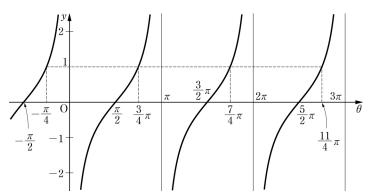
- (4) 関数 $y = \sin\theta$, $y = \cos\theta$ の周期は 2π であり,関数 $y = \tan\theta$ の 周期は π である。
- (5) 関数 $y = \cos\theta$ のグラフは y軸 に関して対称であり、 $y = \sin\theta$ のグラフは 原点 に関して対称である。また、関数 $y = \tan\theta$ の グラフは 原点 に関して対称である。
- 2 次の関数のグラフをかけ。また、その周期を求めよ。因
- (1) $y = 3\sin\theta$
- [解] $y=3\sin\theta$ のグラフは、 $y=\sin\theta$ のグラフをy 軸方向に3 倍に拡大したものである。その周期は $y=\sin\theta$ と同じく 2π である。



- $(2) \quad y = \cos\frac{\theta}{2}$
- [解] $y=\cos\frac{\theta}{2}$ のグラフは、 $y=\cos\theta$ のグラフを θ 軸方向に 2 倍に拡大したものである。その周期は $y=\cos\theta$ の周期 2π の 2 倍で、 4π である。



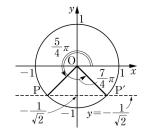
- (3) $y = \tan\left(\theta \frac{\pi}{2}\right)$
- [解] $y=\tan\left(\theta-\frac{\pi}{2}\right)$ のグラフは、 $y=\tan\theta$ のグラフを θ 軸方向に $\frac{\pi}{2}$ だけ平 行移動したものである。その周期は $y=\tan\theta$ と同じく π である。



 $\mathbf{3}$ 0 $\leq \theta < 2\pi$ のとき、次の方程式を満たす θ の値を求めよ。因

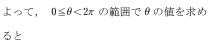
(1)
$$\sin\theta = -\frac{1}{\sqrt{2}}$$

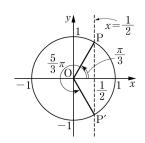
[解] 右の図のように、単位円の周上で、y座標が $-\frac{1}{\sqrt{2}}$ となる点を P 、 P' とすると、動径 OP 、 OP' の表す角が求める角である。よって、 $0 \le \theta < 2\pi$ の範囲で θ の値を求めると



$$\theta = \frac{5}{4}\pi$$
 , $\frac{7}{4}\pi$

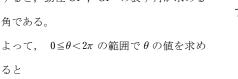
- (2) $\cos\theta = \frac{1}{2}$
- [解] 右の図のように、単位円の周上で、x 座標が $\frac{1}{2}$ となる点を P 、 P' とすると、動径 OP 、 OP' の表す角が求める角である。

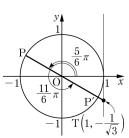




$$\theta = \frac{\pi}{3}$$
, $\frac{5}{3}\pi$

- (3) $\tan\theta = -\frac{1}{\sqrt{3}}$
- [解] 右の図のように、点 $T\left(1,-\frac{1}{\sqrt{3}}\right)$ と 原点を通る直線と単位円の交点をP,P'と すると、動径OP、OP'の表す角が求める 角である。

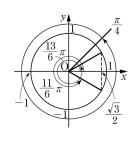




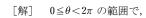
$$\theta = \frac{5}{6}\pi \ , \quad \frac{11}{6}\pi$$

4 $0 \le \theta < 2\pi$ のとき、方程式 $\cos\left(\theta + \frac{\pi}{4}\right) = \frac{\sqrt{3}}{2}$ を満たす θ の値を求めよ。因

[解]
$$0 \le \theta < 2\pi$$
 のとき $\frac{\pi}{4} \le \theta + \frac{\pi}{4} < \frac{9}{4}\pi$ ……① 単位円の周上で、 x 座標が $\frac{\sqrt{3}}{2}$ となる $\theta + \frac{\pi}{4}$ の値は、①の範囲で



- $\theta + \frac{\pi}{4} = \frac{11}{6} \pi$, $\frac{13}{6} \pi$ ゆえに $\theta = \frac{19}{12} \pi$, $\frac{23}{12} \pi$
- **5** $0 \le \theta < 2\pi$ のとき,不等式 $\cos \theta < -\frac{1}{\sqrt{2}}$ を満たす θ の値の範囲を求めよ。**因**



$$\cos\theta = -\frac{1}{\sqrt{2}}$$
 となる θ の値は

であるから、求める角 θ の動径は、右の図の鉛線部分にある

