

小テスト	,	No.34	三角関数	一般角		
		年	組	番	名前	/20

1. 次の図で、OX を始線としたときの動径 OP の表す一般角を $\alpha+360^{\circ}\times n$ (n は整数)の形で表せ。ただし、 $0^{\circ} \le \alpha < 360^{\circ}$ とする。

2. 次の角の動径が表す一般角を $\alpha+360^{\circ}\times n$ (n は整数)の形で表せ。ただし、 $0^{\circ}\leq\alpha<360^{\circ}$ とする。

- (1) 750°
- (2) -70°

3. 次の角を弧度法で表せ。

- (1) 300°
- (2) -150°

4. 次の弧度法による角を度で表せ。

- (1) $\frac{7}{6}\pi$
- (2) $-\frac{4}{3}\pi$

5. 半径 12,中心角 $\frac{5}{6}\pi$ の扇形の弧の長さ l と面積 S を求めよ。

小テスト解答 No.34 三角関数 一般角

1. (1) $60^{\circ} + 360^{\circ} \times n$ (n は整数)

(2点)

(2) $360^{\circ} - 135^{\circ} = 225^{\circ}$

よって $225^{\circ} + 360^{\circ} \times n$ (n は整数)

(2点)

2. (1) $750^{\circ} = 30^{\circ} + 360^{\circ} \times 2$ よって $30^{\circ} + 360^{\circ} \times n$ (*n* は整数)

(2点)

(2) $-70° = 290° + 360° \times (-1)$ よって $290° + 360° \times n$ (n は整数)

(2点)

- - (1) $300^{\circ} = \frac{\pi}{180} \, \vec{\ni} \, \vec{\vee} \vec{r} \, \vec{\vee} \times 300 = \frac{5}{3} \pi \, \vec{\ni} \, \vec{\vee} \vec{r} \, \vec{\vee}$

(2点)

(2) $-150^{\circ} = \frac{\pi}{180} \, \vec{\ni} \, \vec{\mathcal{I}} \,$

(2点)

- **4.** $\pi \ni \forall r \nu = 180^{\circ} \text{ rob } 3.$
 - (1) $\frac{7}{6}\pi \, \vec{\ni} \, \vec{\vee} \, \vec{r} \, \nu = \frac{7}{6} \times 180^{\circ} = 210^{\circ}$

(2点)

(2) $-\frac{4}{3}\pi \, \vec{\mathcal{P}} \, \vec{\mathcal{V}} \, \mathcal{V} = -\frac{4}{3} \times 180^{\circ} = -240^{\circ}$

(2点)

5. $l = 12 \cdot \frac{5}{6}\pi = 10\pi$

(2点)

 $S = \frac{1}{2} \cdot 12^2 \cdot \frac{5}{6} \pi = 60\pi$

(2点)