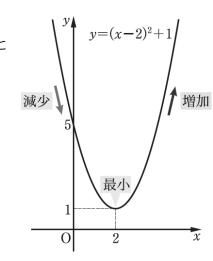
2節 2次関数の値の変化

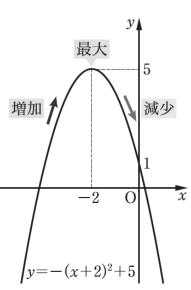
1 2次関数の最大値・最小値

(教科書 p.72)

例1 2 次関数 $y = (x-2)^2 + 1$ のグラフは,)を頂点と 直線() を軸とし,(する下に凸の放物線である。 よって、右のグラフから x < 2の範囲で yの値は(x > 2 の範囲で y の値は(していることがわかる。 したがって, () のとき y の値は最小となり, 最小値は()である。 また, yの値はいくらでも大きくなるから, 最大値は() **例2** 2 次関数 $y = (x+2)^2 + 5$ のグラフは, 直線() を軸とし,(点とする上に凸の放物線である。



|2 2次関数 y = (x + 2)² + 5のグラフは、 直線 () を軸とし、() を頂 点とする上に凸の放物線である。 よって、右のグラフから x < -2 の範囲で yの値は () x > -2 の範囲で yの値は () していることがわかる。 したがって、() のとき y の値は最大となり、 最大値は () である。 また、yの値はいくらでも小さくなるから、 最小値は ()



2次関数の最大値・最小値

2 次関数 $y = a(x-p)^2 + q$ の最大値・最小値は、次のようになる。

a > 0 のとき

D

W

最小値 q

a < 0 のとき 最大値 q

O

D

A

x = p のとき 最小値は q である。 最大値はない。 x = p のとき 最大値は q である。 最小値はない。

間1 次の2次関数の最大値または最小値を求めなさい。

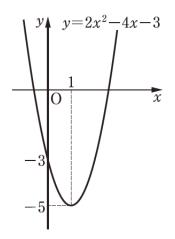
$$(1) \quad y = (x-1)^2 - 2$$

(2)
$$y = -(x-2)^2 + 6$$

例題 2 次関数 $y = 2x^2 - 4x - 3$ の最大値または最小値を求めなさい。

解 与えられた2次関数は

と変形できる。 したがって,この関数は ()のとき, 最小値() 最大値は(



問2 次の2次関数の最大値または最小値を求めなさい。

$$(1) \quad y = 2x^2 - 8x + 13$$

$$(2) \quad y = -3x^2 - 6x + 7$$

かぎられた範囲での最大値・最小値

(教科書 p.74)

関数で、x のとる値の範囲を、その関数の(1)という。

関数の定義域は、たとえば

$$y = (x - 1)^2 - 3 \ (-2 \le x \le 3)$$

のように、関数を表す式の後に()を用いて示すことがある。

例題 2 次関数 $y=x^2-2x-2$ について、次の定義域における最大値と最小値を求めなさい。

2 (1) $-2 \le x \le 3$

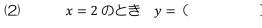
(2) $2 \le x \le 4$

解 (1) $y = x^2 - 2x - 2 = (x - 1)^2 - 3$

と変形できる。

$$x = -2$$
 のとき $y = ($) $x = 3$ のとき $y = ($)

この関数のグラフは右の図の実線部分であるから

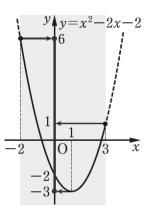


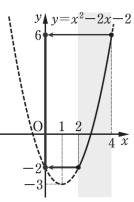
x = 4 のとき y = (

この関数のグラフは右の図の実線部分であるから

)

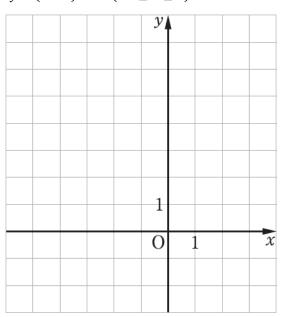
x = 2 のとき (



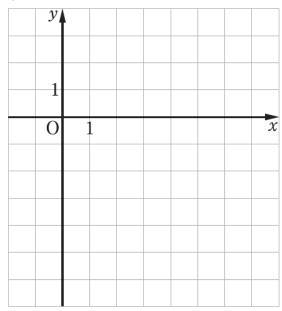


間3 次の2次関数の最大値と最小値を求めなさい。

(1)
$$y = (x+1)^2 - 2 \ (-3 \le x \le 2)$$



(2) $y = x^2 - 6x + 3 \ (0 \le x \le 2)$



例題 長さ 20cm の針金を折り曲げて長方形をつくる。長方形の縦をxcm として,面積ycm 2 の最大値をxdかなさい。

解 長方形の横は

と表される。

ただし、辺の長さは正であるから

 \cdots

長方形の面積 ycm² は

y =

となる。

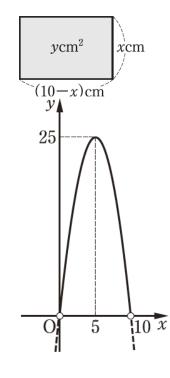
よって、①のとき、この関数のグラフは 右の図の実線部分である。したがって

() のとき

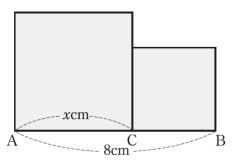
最大値(

である。

答()



間4 長さ 8cm の線分 AB 上に点 C をとり、AC、CB を 1 辺とする 2 つの正方形をつくる。AC の長さをxcm として、この 2 つの正方形の面積の和 ycm² の最小値を求めなさい。



2 2次関数のグラフと2次方程式

(教科書 p.76)

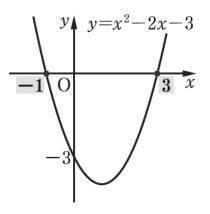
間5 次の2次関数のグラフとx軸の共有点のx座標を求めなさい。

(1)
$$y = x^2 - x - 6$$

例3 2 次関数

$$y = x^2 - 2x - 3 \qquad \cdots$$

のグラフと x 軸の共有点の x 座標を求めてみよう。 ①のグラフと x 軸の共有点では,y 座標は0 となる。 よって,共有点の x 座標は,①で y=0 とした 2 次方程式 $x^2-2x-3=0$ より (x+1)(x-3)=0したがって,共有点の x 座標は()

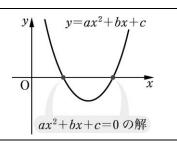


(2) $y = 2x^2 - 9x - 5$

2 次関数のグラフと x 軸の共有点

2 次関数 $y = ax^2 + bx + c$ のグラフと x 軸の 共有点の x 座標は

2 次方程式 $ax^2 + bx + c = 0$ の解である。

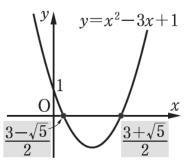


(3) $y = x^2 - 5x + 5$

例4 2 次関数 $y = x^2 - 3x + 1$ のグラフと x 軸の共有点の x 座標は, 2 次方程式 $x^2 - 3x + 1 = 0$ の解である。これを解の公式を用いて解くと

x =

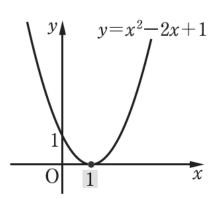
したがって, 共有点の x 座標は(



 $(4) \quad y = 3x^2 + 3x - 2$

例5 2 次関数 $y = x^2 - 2x + 1$ のグラフと x 軸の共有点の x 座標は、 2 次方程式 $x^2 - 2x + 1 = 0$ の解である。これを因数分解を利用 して解くと

より () したがって, 共有点の x 座標は ()



2 次関数のグラフと x 軸がただ 1 点を共有するとき、2 次関数のグラフは x 軸に(²)という。また、その共有点を(³)という。

例6 2 次関数 $y = x^2 - 2x + 3$ のグラフと x 軸の共有点の x 座標は、2 次方程式 $x^2 - 2x + 3 = 0$ の解である。これを解の公式を用いて解くと

x =

根号の中が負となるから、解はない。 この場合、 $y = x^2 - 2x + 3$ のグラフは

 $y = x^2 - 2x + 3 =$

より、右の図のようになり、グラフとx軸の共有点は(

 $y = x^2 - 2x + 3$ $y = x^2 - 2x + 3$

根号の中が負となり解がない場合は、グラフとx軸の共有点はない。

間6 次の2次関数のグラフとx軸の共有点のx座標を求めなさい。

$$(1) \ \ y = x^2 + 6x + 9$$

$$(2) \quad y = 4x^2 + 4x + 1$$

(3)
$$y = x^2 - 2x + 5$$

$$(4) \quad y = 3x^2 + 2x + 4$$

3 2次関数のグラフと2次不等式

(教科書 p.78)

不等式

 $x^2 - 4x + 3 > 0$, $x^2 - 4x + 3 < 0$

のように、移項して右辺が0になるように整理したとき、左辺が2次式となる不等式を

) という。

グラフが x 軸と 2 点を共有するとき

(教科書 p.78)

例7 2 次関数 $y = x^2 - 4x + 3$ のグラフと x 軸の共有点の x 座標は $x^2 - 4x + 3 = 0$

 $\sharp \mathcal{V} \quad x =$

よって、右の図より、x の値が1 < x < 3 の範囲にあると、グラフ はx軸の下側にある。このときy < 0であるから、

2 次不等式 $x^2 - 4x + 3 < 0$ を成り立たせる x の値の範囲は

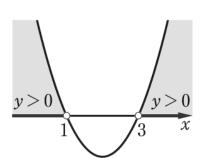
(

であることがわかる。

同様に右の図から、2次不等式 $x^2 - 4x + 3 > 0$ を成り立たせる xの値の範囲は

(

であることがわかる。



y < 0/3

間7 右の $y = x^2 - x - 6$ のグラフを利用して、次の不等式を成り立たせる xの値の範囲を求めなさい。

$$(1) \quad x^2 - x - 6 < 0$$

 $y \neq v = x^2 - x - 6$

(2) $x^2 - x - 6 > 0$

2 次不等式を成り立たせる x の値の範囲を、その 2 次不等式の(2 とを不等式を(3)という。

) といい、解を求めるこ

2次不等式の解

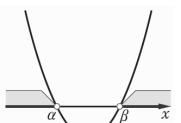
 $ax^2 + bx + c = 0$ (a > 0) の2つの解を

 α, β とすると,

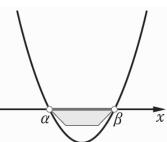
 $ax^2 + bx + c > 0$ の解は

 $ax^2 + bx + c < 0$ の解は

 $x < \alpha$, $\beta < x$



 $\alpha < x < \beta$



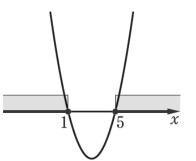
例題 次の2次不等式を解きなさい。

$$(2) \quad x^2 + x - 6 < 0$$

解 (1) 2 次方程式 $x^2 - 6x + 5 = 0$ を解くと

より

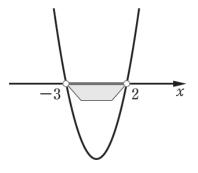
したがって、2次不等式 $x^2 - 6x + 5 \ge 0$ の解は



(2) 2 次方程式 $x^2 + x - 6 = 0$ を解くと

より

したがって、2次不等式 $x^2 + x - 6 < 0$ の解は



問8 次の2次不等式を解きなさい。

$$(1) \ x^2 - 7x + 10 > 0$$

$$(2) \quad x^2 + 2x - 3 \le 0$$

(3)
$$x^2 + 9x + 8 \ge 0$$

$$(4) \quad x^2 - 9x + 18 < 0$$

いろいろな2次不等式

例題 2 次不等式 $x^2 - 3x + 1 \ge 0$ を解きなさい。

5

解 2 次方程式 $x^2 - 3x + 1 = 0$ を解の公式を用いて解くと

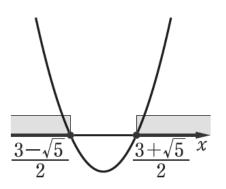
x =

したがって、2次不等式 $x^2 - 3x + 1 \ge 0$ の解は

(教科書 p.80)

問9 次の2次不等式を解きなさい。

 $(1) \ x^2 - 5x + 3 < 0$



(2) $2x^2 - x - 6 \ge 0$

 x^2 の係数が負の 2 次不等式は、両辺に -1 をかけて x^2 の係数を正にしてから解くとよい。

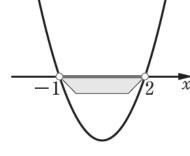
例題 2 次不等式 $-x^2 + x + 2 > 0$ を解きなさい。

6

2 次方程式 $x^2 - x - 2 = 0$ を解くと

より()

したがって、2次不等式 $-x^2 + x + 2 > 0$ の解は



間10次の2次不等式を解きなさい。

$$(1) \quad -x^2 - x + 20 \ge 0$$

(2)
$$-x^2 - 6x + 27 < 0$$

グラフが x 軸と1点を共有するとき

(教科書 p.81)

例8 (1)
$$x^2 - 2x + 1 > 0$$
 (2) $x^2 - 2x + 1 < 0$

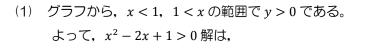
(2)
$$x^2 - 2x +$$

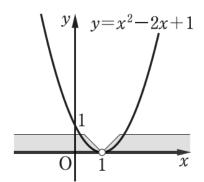
2 次方程式
$$x^2 - 2x + 1 = 0$$
 を解くと

(

より ()

よって, $y = x^2 - 2x + 1$ のグラフは右の図のように x 軸に接し ている。





(2) グラフから,
$$x^2 - 2x + 1 < 0$$
 の解は ()

間 11 次の2次不等式を解きなさい。

$$(1) \quad x^2 + 6x + 9 > 0$$

$$(2) \quad x^2 + 8x + 16 < 0$$

グラフが x 軸と共有点をもたないとき

(教科書 p.81)

- **例9** (1) $x^2 2x + 3 > 0$ (2) $x^2 2x + 3 < 0$

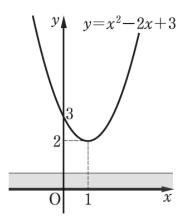
2 次方程式 $x^2 - 2x + 3 = 0$ を解くと

根号の中が負となるから、

解は()。

このとき, $y = x^2 - 2x + 3$ のグラフはつねに x 軸の上側にあり, x の どんな値に対してもy > 0である。

- (1) グラフから, $x^2 2x + 3 > 0$ の解は, (
- (2) グラフから, $x^2 2x + 3 > 0$ の解は ()



間12次の2次不等式を解きなさい。

$$(1) \ x^2 - 4x + 5 > 0$$

(2) $x^2 - 6x + 10 < 0$

復習問題

(教科書 p.82)

- 2 次の2次関数の最大値と最小値を求めなさい。
 - (1) $y = (x-3)^2 + 5$ $(2 \le x \le 5)$

- 1 次の2次関数の最大値または最小値を求めなさい。
 - $(1) \quad y = 2x^2 + 8x + 7$

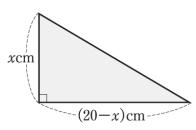
(2) $y = -2(x-1)^2 + 3 \quad (-1 \le x \le 1)$

 $(2) \quad y = -x^2 - 2x + 4$

(3)
$$y = x^2 + 6x + 8 \quad (-2 \le x \le 0)$$

3 直角をはさむ 2 辺の長さの和が 20cm であるような直角三角形がある。

この直角三角形の面積 ycm² の最大値を求めなさい。



4 次の2次関数のグラフとx軸の共有点のx座標を求めなさい。

(1)
$$y = (x+2)(x-5)$$

$$(2) \quad y = x^2 + x - 12$$

(3)
$$y = 3x^2 + 5x + 1$$

$$(4) \quad y = 9x^2 - 6x + 1$$

$$(5) \ \ y = 2x^2 - 6x + 5$$

- 5 次の2次不等式を解きなさい。
 - $(1) \quad x^2 + 5x 24 > 0$

 $(2) \quad x^2 + 7x + 10 \le 0$

(3) $x^2 - 4x + 1 \le 0$

 $(4) \quad -x^2 + x + 6 > 0$

 $(5) \quad 16x^2 + 8x + 1 > 0$

(6) $x^2 + 4x + 8 < 0$

6 地上から真上に毎秒 30m の速さでボールを投げ上げるとき、投げ上げてから x 秒後のボールの高さ ym は

 $y = -5x^2 + 30x$

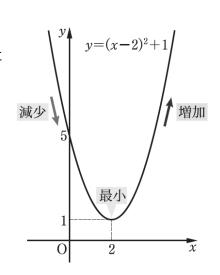
で表される。ボールの高さが25m以上にあるのは、何秒後から何秒後までかを求めなさい。

2節 2次関数の値の変化

1 2次関数の最大値・最小値

(教科書 p.72)

例1 2 次関数 $y = (x-2)^2 + 1$ のグラフは、 直線(x = 2)を軸とし、(点(2,1))を頂点と する下に凸の放物線である。 よって、右のグラフから x < 2 の範囲で y の値は(減少) x > 2 の範囲で y の値は(増加) していることがわかる。 したがって、(x = 2)のとき y の値は最小となり、 最小値は(1)である。 また、y の値はいくらでも大きくなるから、



例2 2 次関数 $y = (x+2)^2 + 5$ のグラフは、 直線 (x = -2) を軸とし、(点 (-2, 5)) を頂点とする上に凸の放物線である。

最大値は(ない。)

よって、右のグラフから

x < -2 の範囲で y の値は(増加)

x > -2 の範囲で y の値は(減少)

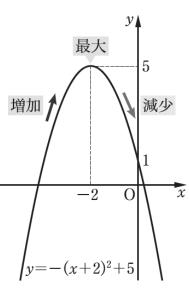
していることがわかる。

したがって、(x = -2) のときy の値は最大となり、

最大値は (**5**) である。

また、yの値はいくらでも小さくなるから、

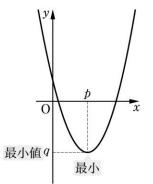
最小値は(ない。)



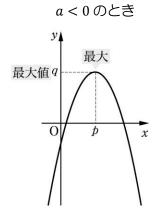
2次関数の最大値・最小値

2 次関数 $y = a(x-p)^2 + q$ の最大値・最小値は、次のようになる。

a > 0 のとき



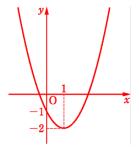
x = p のとき 最小値は q である。 最大値はない。



x = p のとき 最大値は q である。 最小値はない。

問1 次の2次関数の最大値または最小値を求めなさい。

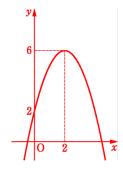
 $(1) y = (x-1)^2 - 2$



x = 1 のとき 最小値 -2 である。

最大値はない。

(2) $y = -(x-2)^2 + 6$



x = 2 のとき 最大値 6 である。

最小値はない。

例題 2 次関数 $y = 2x^2 - 4x - 3$ の最大値または最小値を求めなさい。

解 与えられた2次関数は

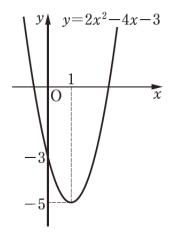
$$y = 2x^2 - 4x - 3$$
$$= 2(x - 1)^2 - 5$$

と変形できる。

したがって、この関数は

$$(x=1)$$
 のとき、
最小値 (-5)

最大値は(ない。)



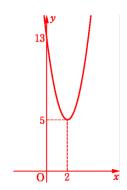
間2 次の2次関数の最大値または最小値を求めなさい。

$$(1) \quad y = 2x^2 - 8x + 13$$

与えられた2次関数は

$$y = 2x^2 - 8x + 13$$
$$= 2(x - 2)^2 + 5$$

と変形できる。



したがって、この関数は

最大値はない。

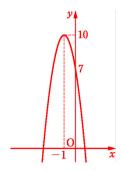
$$(2) \quad y = -3x^2 - 6x + 7$$

与えられた2次関数は

$$y = -3x^2 - 6x + 7$$

$$= -3(x+1)^2 + 10$$

と変形できる。



したがって、この関数は

最小値はない。

かぎられた範囲での最大値・最小値

(教科書 p.74)

関数で、x のとる値の範囲を、その関数の(1 定義域)という。

関数の定義域は、たとえば

$$y = (x - 1)^2 - 3 \ (-2 \le x \le 3)$$

のように、関数を表す式の後に()を用いて示すことがある。

例題 2 次関数 $y=x^2-2x-2$ について、次の定義域における最大値と最小値を求めなさい。

2 (1) $-2 \le x \le 3$

(2) $2 \le x \le 4$

解 (1) $y = x^2 - 2x - 2 = (x - 1)^2 - 3$ と変形できる。

x = -2 のとき y = (6)x = 3 のとき y = (1)

この関数のグラフは右の図の実線部分であるから

x = -2 のとき (最大値 6)

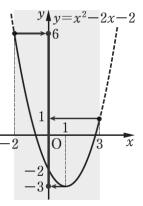
x = 1 のとき (最小値 -3)

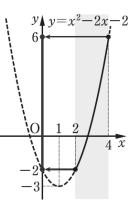
(2) x = 2 のとき y = (-2) x = 4 のとき y = (6)

この関数のグラフは右の図の実線部分であるから

x = 4 のとき (最大値 6)

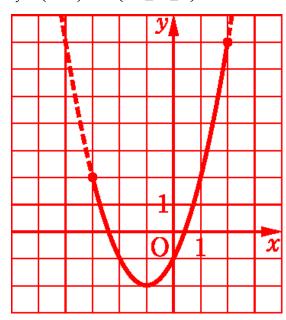
x = 2 のとき (最小値 -2)





間3 次の2次関数の最大値と最小値を求めなさい。

(1) $y = (x+1)^2 - 2 \ (-3 \le x \le 2)$



x = -3 のとき y = 2

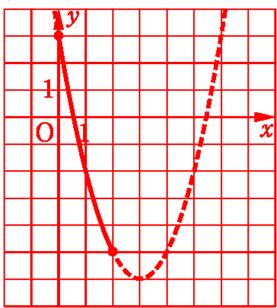
x=2のとき y=7

この関数のグラフは図の実線部分であるから

x = 2 のとき 最大値 7

x = -1 のとき 最小値 -2

(2) $y = x^2 - 6x + 3 \ (0 \le x \le 2)$



 $y = x^2 - 6x + 3$ $= (x - 3)^2 - 6$

よって

x = 0 のとき y = 3

x = 2のとき y = -5

この関数のグラフは図の実線部分であるから

x = 0 のとき 最大値 3

x = 2 のとき 最小値 -5

例題長さ 20cm の針金を折り曲げて長方形をつくる。長方形の縦を xcm として、面積 ycm² の最大値を3求めなさい。

解 長方形の横は

$$(10 - x)$$
cm

と表される。

ただし、辺の長さは正であるから

$$0 < x < 10$$
 ······①

長方形の面積 ycm² は

$$y = x(10 - x)$$

$$= -x^{2} + 10x$$

$$= -(x^{2} - 10x)$$

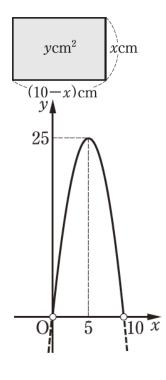
$$= -(x - 5)^{2} + 25$$

となる。

よって、①のとき、この関数のグラフは 右の図の実線部分である。したがって

である。

答(最大値 25cm²)



間4 長さ 8cm の線分 AB 上に点 C をとり、AC、CB を 1 辺とする 2 つの正方形をつくる。AC の長さをxcm として、この 2 つの正方形の面積の和 ycm² の最小値を求めなさい。

AC = x cm であるから CB = (8 - x) cm と表される。

ただし、辺の長さは正であるから

$$0 < x < 8 \cdots 1$$

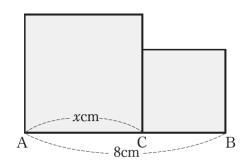
2 つの正方形の面積の和 ycm² は

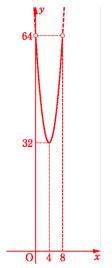
$$y = x^2 + (8 - x)^2$$

$$=2x^2-16x+64$$

$$=2(x^2-8x)+64$$

$$=2(x-4)^2+32$$





したがって

x = 4 のとき 最小値 32

答 最小值 32cm²

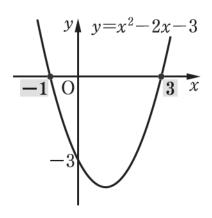
2 2次関数のグラフと2次方程式

(教科書 p.76)

例3 2 次関数

$$y = x^2 - 2x - 3 \qquad \cdots$$

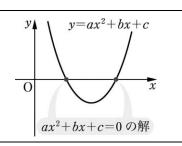
のグラフと x 軸の共有点の x 座標を求めてみよう。 ①のグラフと x 軸の共有点では,y 座標は0 となる。 よって,共有点の x 座標は,①で y=0 とした 2 次方程式 $x^2-2x-3=0$ の解として求められる。 $x^2-2x-3=0$ より (x+1)(x-3)=0したがって,共有点の x 座標は(x=-1, 3



2 次関数のグラフと x 軸の共有点

2 次関数 $y = ax^2 + bx + c$ のグラフと x 軸の 共有点の x 座標は

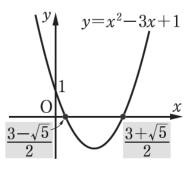
2 次方程式 $ax^2 + bx + c = 0$ の解である。



例4 2 次関数 $y = x^2 - 3x + 1$ のグラフと x 軸の共有点の x 座標は, 2 次方程式 $x^2 - 3x + 1 = 0$ の解である。これを解の公式を用いて解くと

$$x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4 \times 1 \times 1}}{2 \times 1} = \frac{3 \pm \sqrt{5}}{2}$$

したがって、共有点のx座標は ($x = \frac{3 \pm \sqrt{5}}{2}$)



間5 次の2次関数のグラフとx軸の共有点のx座標を求めなさい。

(1)
$$y = x^2 - x - 6$$

2 次方程式 $x^2 - x - 6 = 0$ を因数分解を利用して解くと

$$(x+2)(x-3)=0$$

より
$$x = -2$$
, 3

したがって, 共有点のx 座標は

$$x = -2, 3$$

(2) $v = 2x^2 - 9x - 5$

2 次方程式 $2x^2 - 9x - 5 = 0$ を因数分解を利用して解くと

$$(x - 5)(2x + 1) = 0$$

より

$$x = 5, -\frac{1}{2}$$

したがって、共有点のx座標は

$$x = 5, -\frac{1}{2}$$

(3) $y = x^2 - 5x + 5$

2 次方程式 $x^2 - 5x + 5 = 0$ を解の公式を用いて解くと

$$\chi = \frac{-(-5)\pm\sqrt{(-5)^2 - 4 \times 1 \times 5}}{2 \times 1}$$

$$=\frac{5\pm\sqrt{5}}{2}$$

したがって, 共有点のx 座標は

$$x = \frac{5 \pm \sqrt{5}}{2}$$

 $(4) \quad y = 3x^2 + 3x - 2$

2 次方程式 $3x^2 + 3x - 2 = 0$ を解の公式を用いて解くと

$$x = \frac{-3 \pm \sqrt{3^2 - 4 \times 3 \times (-2)}}{2 \times 3}$$

$$=\frac{-3\pm\sqrt{33}}{6}$$

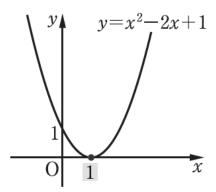
したがって、共有点のx座標は

$$x = \frac{-3 \pm \sqrt{33}}{6}$$

例5 2 次関数 $y = x^2 - 2x + 1$ のグラフと x 軸の共有点の x 座標は、 2 次方程式 $x^2 - 2x + 1 = 0$ の解である。これを因数分解を利用 して解くと

$$(x-1)^2=0$$

より($x=1$)
したがって、共有点の x 座標は($x=1$)



2 次関数のグラフと x 軸がただ 1 点を共有するとき、2 次関数のグラフは x 軸に(2 接する)という。また、その共有点を(3 接点)という。

例6 2 次関数 $y = x^2 - 2x + 3$ のグラフと x 軸の共有点の x 座標は, 2 次方程式 $x^2 - 2x + 3 = 0$ の解である。これを解の公式を用いて解くと

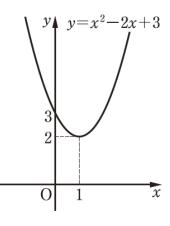
$$x = \frac{-(-2)\pm\sqrt{(-2)^2 - 4\times1\times3}}{2\times1} = \frac{2\pm\sqrt{-8}}{2}$$

根号の中が負となるから、解はない。

この場合, $y = x^2 - 2x + 3$ のグラフは

$$y = x^2 - 2x + 3 = (x - 1)^2 + 2$$

より、右の図のようになり、グラフとx軸の共有点は(ない。



根号の中が負となり解がない場合は、グラフとx軸の共有点はない。

間6 次の2次関数のグラフとx軸の共有点のx座標を求めなさい。

$$(1) \ \ y = x^2 + 6x + 9$$

$$2$$
 次方程式 $x^2 + 6x + 9 = 0$ を因数分解を利用して解くと

$$(x+3)^2=0$$

より
$$x = -3$$

$$x = -3$$

(2)
$$y = 4x^2 + 4x + 1$$

$$2$$
 次方程式 $4x^2 + 4x + 1 = 0$ を因数分解を利用して解くと

$$(2x+1)^2=0$$

$$x = -\frac{1}{2}$$

したがって, 共有点の x 座標は

$$x = -\frac{1}{2}$$

(3)
$$y = x^2 - 2x + 5$$

2 次方程式 $x^2 - 2x + 5 = 0$ を解の公式を用いて解くと

$$x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \times 1 \times 5}}{2 \times 1}$$

$$=\frac{2\pm\sqrt{-16}}{2}$$

根号の中が負となるから、解はない。

したがって, グラフと x 軸の共有点はない。

$$(4) \quad y = 3x^2 + 2x + 4$$

2 次方程式 $3x^2 + 2x + 4 = 0$ を解の公式を用いて解くと

$$\chi = \frac{-2\pm\sqrt{2^2-4\times3\times4}}{2\times3}$$

$$=\frac{-2\pm\sqrt{-44}}{6}$$

根号の中が負となるから、解はない。

したがって、グラフと x 軸の共有点はない。

3 2次関数のグラフと2次不等式

(教科書 p.78)

不等式

 $x^2 - 4x + 3 > 0$, $x^2 - 4x + 3 < 0$

のように、移項して右辺が0になるように整理したとき、左辺が2次式となる不等式を

(1 2 次不等式) という。

グラフが x 軸と 2 点を共有するとき

(教科書 p.78)

例7 2 次関数 $y = x^2 - 4x + 3$ のグラフと x 軸の共有点の x 座標は $x^2 - 4x + 3 = 0$

$$(x-1)(x-3)=0$$

より x = 1. 3

よって、右の図より、x の値が1 < x < 3 の範囲にあると、グラフ はx軸の下側にある。このときy < 0であるから、

2 次不等式 $x^2 - 4x + 3 < 0$ を成り立たせる x の値の範囲は

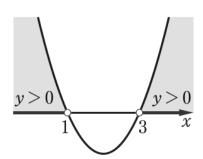
(1 < x < 3)

であることがわかる。

同様に右の図から、2次不等式 $x^2 - 4x + 3 > 0$ を成り立たせる xの値の範囲は

(x < 1, 3 < x)

であることがわかる。



y < 0/3

間7 右の $y = x^2 - x - 6$ のグラフを利用して、次の不等式を成り立たせる xの値の範囲を求めなさい。

(1) $x^2 - x - 6 < 0$

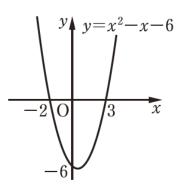
グラフより

-2 < x < 3

(2) $x^2 - x - 6 > 0$

グラフより

x < -2, 3 < x



2次不等式を成り立たせるxの値の範囲を、その2次不等式の $(^2$ 解)といい、解を求めるこ とを不等式を(3 解く)という。

2次不等式の解

 $ax^2 + bx + c = 0$ (a > 0) の2つの解を

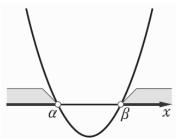
 α, β とすると,

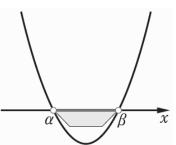
$$ax^2 + bx + c > 0$$
 の解は

 $ax^2 + bx + c < 0$ の解は

$$x < \alpha$$
, $\beta < x$

 $\alpha < x < \beta$





例題 次の2次不等式を解きなさい。

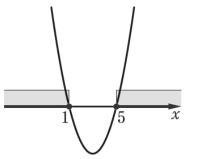
(2)
$$x^2 + x - 6 < 0$$

解 (1) 2 次方程式 $x^2 - 6x + 5 = 0$ を解くと

$$(x-1)(x-5)=0$$

より x=1, 5

したがって、2次不等式 $x^2 - 6x + 5 \ge 0$ の解は $x \le 1, 5 \le x$

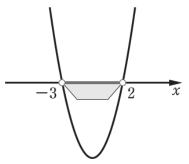


(2) 2 次方程式 $x^2 + x - 6 = 0$ を解くと

$$(x+3)(x-2) = 0$$

より x = -3, 2

したがって、2次不等式 $x^2 + x - 6 < 0$ の解は -3 < x < 2



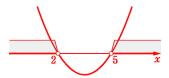
問8 次の2次不等式を解きなさい。

$$(1) \ x^2 - 7x + 10 > 0$$

2 次方程式
$$x^2 - 7x + 10 = 0$$
 を解くと

$$(x-2)(x-5)=0$$

より
$$x = 2$$
, 5



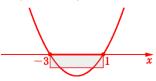
したがって、求める 2 次不等式の解は x < 2, 5 < x

 $(2) \quad x^2 + 2x - 3 \le 0$

2 次方程式
$$x^2 + 2x - 3 \le 0$$
 を解くと

$$(x+3)(x-1)=0$$

より
$$x = -3$$
, 1



したがって、求める2次不等式の解は

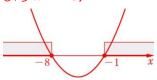
$$-3 \le x \le 1$$

(3) $x^2 + 9x + 8 \ge 0$

2 次方程式 $x^2 + 9x + 8 = 0$ を解くと

$$(x+8)(x+1)=0$$

より
$$x = -8$$
, -1



したがって、求める2次不等式の解は

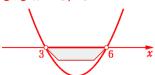
$$x \leq -8, -1 \leq x$$

$(4) \quad x^2 - 9x + 18 < 0$

2 次方程式 $x^2 - 9x + 18 = 0$ を解くと

$$(x-3)(x-6)=0$$

より
$$x = 3$$
, 6



したがって、求める2次不等式の解は

いろいろな2次不等式

例題 2 次不等式 $x^2 - 3x + 1 \ge 0$ を解きなさい。

5

解 2 次方程式 $x^2 - 3x + 1 = 0$ を解の公式を用いて解くと

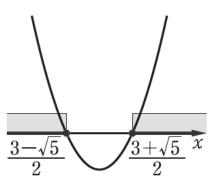
$$x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4 \times 1 \times 1}}{2 \times 1}$$

$$=\frac{3\pm\sqrt{5}}{2}$$

したがって、2次不等式 $x^2 - 3x + 1 \ge 0$ の解は

$$x \le \frac{3-\sqrt{5}}{2}, \quad \frac{3+\sqrt{5}}{2} \le x$$

(教科書 p.80)



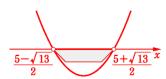
間9 次の2次不等式を解きなさい。

$$(1) \ x^2 - 5x + 3 < 0$$

2 次方程式 $x^2 - 5x + 3 = 0$ を解の公式を用いて解くと

$$x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \times 1 \times 3}}{2 \times 1}$$

$$=\frac{5\pm\sqrt{13}}{2}$$



したがって、求める2次不等式の解は

$$\frac{5 - \sqrt{13}}{2} < \chi < \frac{5 + \sqrt{13}}{2}$$

(2) $2x^2 - x - 6 \ge 0$

2 次方程式 $2x^2 - x - 6 = 0$ を解の公式を用いて解くと

$$x = \frac{-(-1)\pm\sqrt{(-1)^2 - 4 \times 2 \times (-6)}}{2 \times 2}$$

$$=\frac{1\pm\sqrt{49}}{4}$$

$$=\frac{1\pm7}{4}$$

$$x=\frac{1+7}{4}, \frac{1-7}{4}$$

すなわち

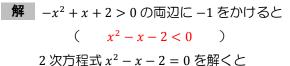
$$x = 2, -\frac{3}{2}$$

したがって、求める2次不等式の解は

$$x \le -\frac{3}{2}$$
, $2 \le x$

 x^2 の係数が負の 2 次不等式は、両辺に -1 をかけて x^2 の係数を正にしてから解くとよい。

例題 2次不等式 $-x^2 + x + 2 > 0$ を解きなさい。 6

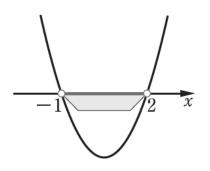


$$(x+1)(x-2) = 0$$

より (
$$x = -1, 2$$
)

したがって、2次不等式 $-x^2 + x + 2 > 0$ の解は

(-1 < x < 2)



間10次の2次不等式を解きなさい。

$$(1) \quad -x^2 - x + 20 \ge 0$$

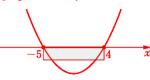
$$-x^2 - x + 20 \ge 0$$
 の両辺に -1 をかけると

$$x^2 + x - 20 \le 0$$

2 次方程式
$$x^2 + x - 20 = 0$$
 を解くと

$$(x+5)(x-4)=0$$

より
$$x = -5$$
, 4



したがって、求める2次不等式の解は

 $-5 \le x \le 4$

(2) $-x^2 - 6x + 27 < 0$

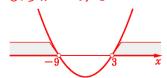
$$-x^2 - 6x + 27 < 0$$
 の両辺に -1 をかけると

$$x^2 + 6x - 27 > 0$$

2 次方程式 $x^2 + 6x - 27 = 0$ を解くと

$$(x+9)(x-3)=0$$

より
$$x = -9$$
, 3



したがって、求める2次不等式の解は

$$x < -9$$
, $3 < x$

グラフが x 軸と1点を共有するとき

(教科書 p.81)

- **例8** (1) $x^2 2x + 1 > 0$
- $(2) \quad x^2 2x + 1 < 0$

2 次方程式
$$x^2 - 2x + 1 = 0$$
 を解くと

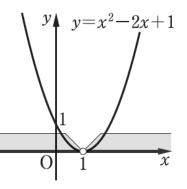
$$((x-1)^2 = 0)$$

より(
$$x=1$$
)

よって, $y = x^2 - 2x + 1$ のグラフは右の図のように x 軸に接している。

(1) グラフから, x < 1, 1 < x の範囲で y > 0 である。 よって, $x^2 - 2x + 1 > 0$ 解は,

(1以外のすべての実数)



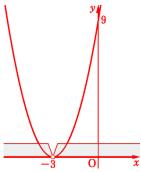
間11次の2次不等式を解きなさい。

$$(1) \quad x^2 + 6x + 9 > 0$$

2 次方程式
$$x^2 + 6x + 9 = 0$$
 を解くと

$$(x+3)^2 = 0$$

より
$$x = -3$$



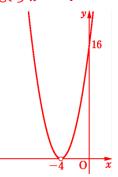
したがって、求める2次不等式の解は -3以外のすべての実数

 $(2) \quad x^2 + 8x + 16 < 0$

2 次方程式
$$x^2 + 8x + 16 = 0$$
 を解くと

$$(x+4)^2=0$$

より
$$x = -4$$



したがって、求める2次不等式の解はない。

グラフが x 軸と共有点をもたないとき

(教科書 p.81)

例9 (1) $x^2 - 2x + 3 > 0$

 $(2) \quad x^2 - 2x + 3 < 0$

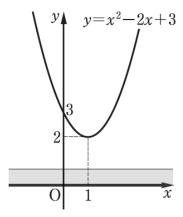
2 次方程式 $x^2 - 2x + 3 = 0$ を解くと

$$\chi = \frac{-(-2)\pm\sqrt{(-2)^2-4\times1\times3}}{2\times1} = \frac{2\pm\sqrt{-8}}{2}$$

根号の中が負となるから、

このとき, $y = x^2 - 2x + 3$ のグラフはつねに x 軸の上側にあり, x の どんな値に対しても y > 0 である。

- (1) グラフから, $x^2 2x + 3 > 0$ の解は,
 - (すべての実数)
- (2) グラフから, $x^2 2x + 3 > 0$ の解は (ない。)



間12次の2次不等式を解きなさい。

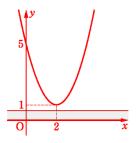
$$(1) \ x^2 - 4x + 5 > 0$$

2 次方程式 $x^2 - 4x + 5 = 0$ を解くと

$$\chi = \frac{-(-4)\pm\sqrt{(-4)^2 - 4 \times 1 \times 5}}{2 \times 1}$$

$$=\frac{4\pm\sqrt{-4}}{2}$$

根号の中が負となるから、解はない。



したがって、求める2次不等式の解はすべての実数

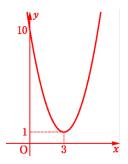
(2)
$$x^2 - 6x + 10 < 0$$

2 次方程式 $x^2 - 6x + 10 = 0$ を解くと

$$x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \times 1 \times 10}}{2 \times 1}$$

$$=\frac{6\pm\sqrt{-4}}{2}$$

根号の中が負となるから、解はない。



したがって、求める2次不等式の解はない。

復習問題

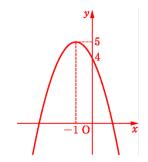
(教科書 p.82)

- 1 次の2次関数の最大値または最小値を求めなさい。
 - $(1) \quad y = 2x^2 + 8x + 7$

$$y = 2x^2 + 8x + 7$$
$$= 2(x+2)^2 - 1$$

したがって、この関数は x = -2 のとき 最小値 -1 最大値はない。

(2) $y = -x^2 - 2x + 4$ $y = -x^2 - 2x + 4$ $= -(x+1)^2 + 5$



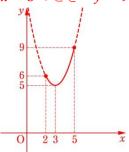
したがって、この関数は x = -1 のとき 最大値 5 最小値はない。

2 次の2次関数の最大値と最小値を求めなさい。

(1)
$$y = (x-3)^2 + 5$$
 $(2 \le x \le 5)$

$$x = 2 \mathcal{O} \mathcal{E} \mathcal{E} \quad y = 6$$

$$x = 5$$
のとき $y = 9$



この関数のグラフは図の実線部分であるから

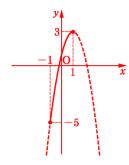
$$x = 5$$
 のとき 最大値 9

$$x = 3$$
 のとき 最小値 5

(2)
$$y = -2(x-1)^2 + 3 \quad (-1 \le x \le 1)$$

$$x = -1$$
 のとき $y = -5$

$$x = 1 \mathcal{O}$$
 ≥ 3



この関数のグラフは図の実線部分であるから

$$x = 1$$
 のとき 最大値 3

$$x = -1$$
 のとき 最小値 -5

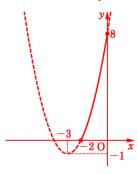
(3)
$$y = x^2 + 6x + 8 \quad (-2 \le x \le 0)$$

$$y = x^2 + 6x + 8$$
$$= (x+3)^2 - 1$$

よって

$$x = -2$$
 のとき $y = 0$

$$x = 0$$
 のとき $y = 8$



この関数のグラフは図の実線部分であるから

x = 0 のとき 最大値 8

x = -2 のとき 最小値 0

3 直角をはさむ 2 辺の長さの和が 20cm であるような直角三角形がある。

この直角三角形の面積 ycm² の最大値を求めなさい。

直角をはさむ 2 辺のうち、1 辺の長さを xcm とすると、他の 1 辺の長さは (20-x)cm と表される。

ただし、辺の長さは正であるから

$$0 < x < 20 \cdots$$

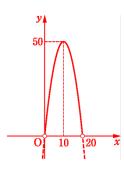
直角三角形の面積 ycm² は

$$y = \frac{1}{2}x(20 - x)$$

$$= -\frac{1}{2}x^2 + 10x$$

$$= -\frac{1}{2}(x^2 - 20x)$$

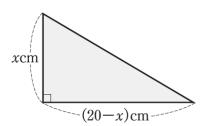
$$= -\frac{1}{2}(x-10)^2 + 50$$



よって、①のとき、この関数のグラフは図の実線部分である。 したがって

x = 10 のとき 最大値 50

答 最大值 50cm²



- 4 次の2次関数のグラフとx軸の共有点のx座標を求めなさい。
 - (1) y = (x+2)(x-5)2 次方程式 (x+2)(x-5) = 0 を解くと x = -2, 5 したがって、共有点の x 座標は

$$x = -2, 5$$

(2)
$$y = x^2 + x - 12$$

2 次方程式 $x^2 + x - 12 = 0$ を因数分解を利用して解くと
 $(x-3)(x+4) = 0$
より $x = 3$, -4
したがって、共有点の x 座標は

$$x = 3$$
, -4

(3) $y = 3x^2 + 5x + 1$ 2 次方程式 $3x^2 + 5x + 1 = 0$ を解の公式を用いて解くと

$$x = \frac{-5 \pm \sqrt{5^2 - 4 \times 3 \times 1}}{2 \times 3}$$

$$=\frac{-5\pm\sqrt{13}}{6}$$

したがって、共有点のx座標は

$$x = \frac{-5 \pm \sqrt{13}}{6}$$

(4)
$$y = 9x^2 - 6x + 1$$

2 次方程式 $9x^2 - 6x + 1 = 0$ を因数分解を利用して解くと
 $(3x - 1)^2 = 0$
より
 $x = \frac{1}{3}$
したがって、共有点の x 座標は
 $x = \frac{1}{2}$

(5) $y = 2x^2 - 6x + 5$ 2 次方程式 $2x^2 - 6x + 5 = 0$ を解の公式を用いて解くと

$$x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \times 2 \times 5}}{2 \times 2}$$

$$=\frac{6\pm\sqrt{-4}}{4}$$

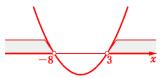
根号の中が負となるから、解はない。 したがって、グラフとx軸の共有点はない。

5 次の2次不等式を解きなさい。

(1)
$$x^2 + 5x - 24 > 0$$

2次方程式 $x^2 + 5x - 24 = 0$ を解くと

$$(x+8)(x-3) = 0$$



したがって、求める2次不等式の解は

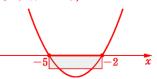
$$x < -8$$
, $3 < x$

(2) $x^2 + 7x + 10 \le 0$

2次方程式 $x^2 + 7x + 10 = 0$ を解くと

$$(x+5)(x+2) = 0$$

より
$$x = -5$$
, -2



したがって、求める2次不等式の解は

$$-5 \le x \le -2$$

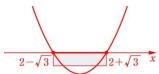
(3) $x^2 - 4x + 1 \le 0$

2 次方程式 $x^2 - 4x + 1 = 0$ を解の公式を用いて解くと

$$\chi = \frac{-(-4) \pm \sqrt{(-4)^2 - 4 \times 1 \times 1}}{2 \times 1}$$

$$=\frac{4\pm\sqrt{12}}{2}=\frac{4\pm2\sqrt{3}}{2}$$

$$=2\pm\sqrt{3}$$



したがって、求める2次不等式の解は

$$2 - \sqrt{3} \le x \le 2 + \sqrt{3}$$

(4)
$$-x^2 + x + 6 > 0$$

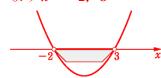
$$-x^2 + x + 6 > 0$$
 の両辺に -1 をかけると

$$x^2 - x - 6 < 0$$

2次方程式
$$x^2 - x - 6 = 0$$
を解くと

$$(x+2)(x-3)=0$$

より
$$x = -2$$
, 3



したがって、求める2次不等式の解は

$$-2 < x < 3$$

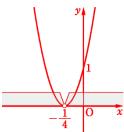
(5) $16x^2 + 8x + 1 > 0$

2次方程式 $16x^2 + 8x + 1 = 0$ を解くと

$$(4x+1)^2=0$$

より

$$\chi = -\frac{1}{4}$$



したがって、求める2次不等式の解は

$$-\frac{1}{4}$$
以外のすべての実数

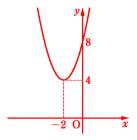
(6)
$$x^2 + 4x + 8 < 0$$

2 次方程式 $x^2 + 4x + 8 = 0$ を解くと

$$\chi = \frac{-4 \pm \sqrt{4^2 - 4 \times 1 \times 8}}{2 \times 1}$$

$$=\frac{-4\pm\sqrt{-16}}{2}$$

根号の中が負となるから,解はない。



したがって、求める2次不等式の解はない。

6 地上から真上に毎秒 30m の速さでボールを投げ上げるとき、投げ上げてから x 秒後のボールの高さ ym は

$$y = -5x^2 + 30x$$

で表される。ボールの高さが25m以上にあるのは、何秒後から何秒後までかを求めなさい。 ボールの高さが25m以上にあることは

$$-5x^2 + 30x \ge 25$$

と表される。

この式を整理すると

$$x^2 - 6x + 5 \le 0$$

2次方程式 $x^2 - 6x + 5 = 0$ を解くと

$$(x-1)(x-5)=0$$

より x = 1, 5

よって, $x^2 - 6x + 5 \le 0$ の解は

 $1 \le x \le 5$

したがって1秒後から5秒後まで