1節 2次関数とそのグラフ

1 関数

自転車に乗って、毎時 15km の速さでx 時間進む。そのとき、進む距離をykm とすると

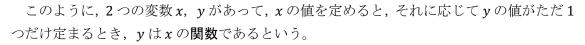
$$y = 15x$$

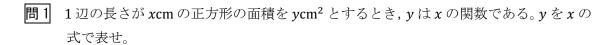
と表される。ただし、 $x \ge 0$ である。

$$zoleta, x = 1 zoleta zoleta y = 15$$

$$x = 3$$
 とすると $y = 45$

となる。





一般に、yがxの関数であることを

$$y = f(x)$$

のような記号で表す。これを単に、関数 f(x) ということもある。

また、関数 y = f(x) において、x = a に対応する y の値を x = a における**関数の値**といい、 f(a) で表す。

例1 関数
$$f(x) = 12 - 4x$$
 について

$$f(1) = 12 - 4 \times 1 = 8$$
 $f(x) = 12 - 4x$

$$f(-2) = 12 - 4 \times (-2) = 20$$

$$f(a) = 12 - 4a$$

問2 次の関数 f(x) について、f(2)、f(-3)、f(a) を求めよ。

(1)
$$f(x) = 2x - 3$$

(2)
$$f(x) = x^2$$

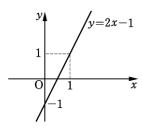
p.96 Training 1

関数のグラフ

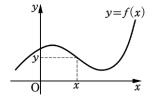
1次関数

$$y = 2x - 1$$

のグラフは、y軸上の点(0, -1)を通り、傾き2の直線である。この グラフは, y = 2x - 1 を満たす (x, y) を座標とする点全体からなって いる。



一般に、関数 y = f(x) において、x の値とそれに対応する y の値の $\operatorname{Al}(x, y)$ を座標とする点全体からなる図形を, 関数 y = f(x) のグラフ という。



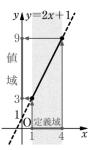
関数の定義域・値域

関数 y = f(x) において、変数 x のとり得る値の範囲を、この関数の定義域という。とく に断らなければ、定義域はf(x)を表す式が意味をもつようなxの値全体と考える。

また、 χ が定義域のすべての値をとるとき、それに応じて変数 χ がとる値の範囲を、この 関数の値域という。

例 2 関数 y = 2x + 1 のグラフは点 (0, 1) を通り、傾き 2 の直線である。 この関数の定義域をすべての実数としたとき, 値域はすべての実数で

ある。



また,この関数の定義域を

 $1 \le x \le 4$

としたとき, 値域は

 $3 \le y \le 9$

である。

問3 次の定義域における関数 y = -3x + 2 の値域を求めよ。

- (1) すべての実数
- $(2) \quad -1 \le x \le 2$

2 2 次関数

関数 $y = 2x^2$

$$y = 2x^2 - 16x + 33$$

などのように、y が x の 2 次式で表されるとき、y は x の 2 次関数であるという。

一般に、2次関数は

$$y = ax^2 + bx + c$$

の形に表される。ただし、a, b, c は定数で、 $a \neq 0$ である。

問 4 周の長さが 12cm の長方形で、横の長さを xcm、面積を ycm^2 とするとき、 $y \in x$ の 式で表せ。ただし、0 < x < 6とする。

$y = ax^2$ のグラフ

右の図は,2次関数

$$y = x^2$$
 ······(1)

$$y = \frac{1}{2}x^2$$

$$y = \frac{1}{2}x^2 \qquad \cdots 2$$

$$y = -\frac{1}{3}x^2 \qquad \cdots 3$$

のグラフである。

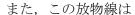
2次関数

$$y = ax^2$$

のグラフの形の曲線を放物線という。

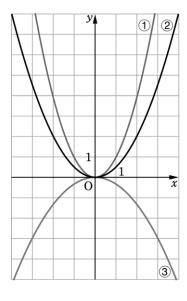
一般に、放物線の対称軸を軸、軸と放物線の交点を頂点とい う。

 $y = ax^2$ のグラフは軸が y 軸, 頂点が原点である放物線であ る。



a > 0 のときは下に凸, a < 0 のときは上に凸

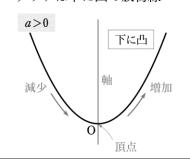
であるという。



一般に、2次関数 $y = ax^2$ は次のような性質をもつ。

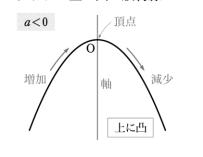
a > 0 のとき

- ・値域は $y \ge 0$ である。
- $\cdot y$ の値は x=0 で減少から 増加に変わる。
- ・グラフは下に凸の放物線



a < 0 のとき

- ・値域は $y \leq 0$ である。
- yの値は x=0 で増加から 減少に変わる。
- ・グラフは上に凸の放物線



問5 次の2次関数のグラフをかけ。

(1)
$$y = 2x^2$$

(2)
$$y = -\frac{1}{2}x^2$$

右の図は、2つの2次関数

$$y = 2x^2$$

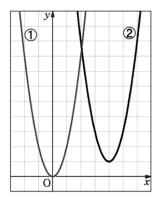
$$\cdots$$

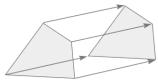
$$y = 2x^2 - 16x + 33$$
2

のグラフをコンピュータでかいたものである。これらのグラフは 形や大きさが同じで、位置がずれているだけである。

一般に, グラフなどの図形を, 一定の方向に, 一定の距離だけ 動かす移動を平行移動という。②のグラフは①のグラフを平行移 動したものである。

ここでは、平行移動を利用して、いろいろな2次関数のグラフ をかいてみよう。





$y = ax^2 + q$ のグラフ

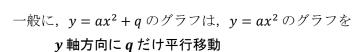
例 3 2つの2次関数 $y = 2x^2$ と $y = 2x^2 + 4$ を比べてみよう。これらの関数について、次のような表をつくる。

x		-3	-2	-1	0	1	2	3	•••
$2x^2$	•••	18	8	2	0	2	8	18	•••
$2x^2 + 4$	•••	22	12	6	4	6	12	22	•••

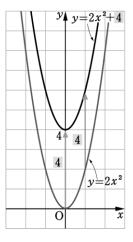
上の表から、 $y=2x^2+4$ のグラフは、 $y=2x^2$ のグラフを y 軸 方向に 4 だけ平行移動した放物線であることがわかる。

この放物線の

軸はy軸,頂点は点 $\left(0,4\right)$ である。



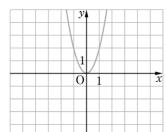
した放物線である。その軸はy軸、頂点は点(0, q)である。



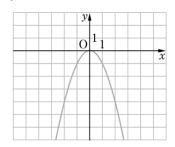
注意 たとえば、y 軸方向に-1 だけ平行移動するというのは、y 軸の負の向きに1 だけ平 行移動するということである。

問6 次の2次関数のグラフの軸と頂点を求め、そのグラフをかけ。

(1)
$$y = 2x^2 - 4$$



(2)
$$y = -x^2 + 2$$



$y = a(x-p)^2$ のグラフ

例4 2 つの 2 次関数 $y = 2x^2$ と $y = 2(x-3)^2$ を比べてみよう。これらの関数について、次のような表をつくる。

x	•••	-2	-1	0	1	2	3	4	5	•••
$2x^2$		8	2	0	2	8	18	32	50	•••
$2(x-3)^2$		50	32	18	8	2	0	2	8	

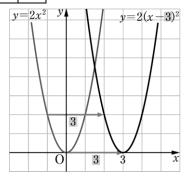
上の表から,同じyの値をとるxの値が右に3だけず $v=2x^2$ yれていることがわかる。

 $\text{L.t.} \text{ind}, \ y = 2(x-3)^2 \ \text{ODF}$ $\text{J.t.} \ y = 2x^2 \ \text{ODF}$ $\text{J.t.} \ y = 2x^2 \ \text{ODF}$

x 軸方向に3

だけ平行移動した放物線である。

この放物線の軸は直線x=3, 頂点は点(3,0)である。



注意 点 (p, 0) を通り、y 軸に平行な直線を直線 x = p と表す。

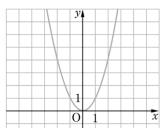
一般に, $y = a(x - p)^2$ のグラフは, $y = ax^2$ のグラフを

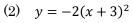
x 軸方向にp だけ平行移動

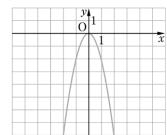
した放物線である。その軸は直線x = p, 頂点は点(p, 0)である。

問7 次の2次関数のグラフの軸と頂点を求め、そのグラフをかけ。

(1)
$$y = (x-2)^2$$







$y = a(x-p)^2$ のグラフ

例 5 2 次関数

$$y = 2(x - 3)^2 + 4$$

のグラフは

$$y = 2(x-3)^2$$

のグラフをy軸方向に4だけ平行移動した放物線である。

よって、①のグラフは

$$y = 2x^2$$

のグラフを

x 軸方向に3

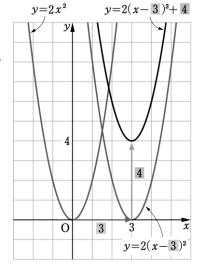
γ軸方向に4

だけ平行移動した放物線で

軸は直線x=3,

頂点は点(3,4)

である。



一般に、次のことが成り立つ。

$y = a(x-p)^2 + q$ のグラフ

 $y = a(x - p)^2 + q \mathcal{O} \mathcal{J} \mathcal{J} \mathcal{J} \mathcal{J}, \quad y = ax^2 \mathcal{O}$

グラフを

x 軸方向にp

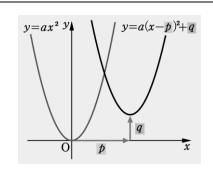
y 軸方向に q

だけ平行移動した放物線である。

その

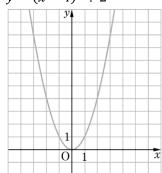
軸は直線 x = p, 頂点は点 (p, q)

である。

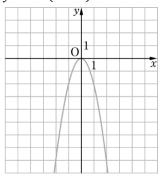


問8 次の2次関数のグラフの軸と頂点を求め、そのグラフをかけ。

(1)
$$y = (x-4)^2 + 2$$



(2)
$$y = -2(x+2)^2 + 3$$



例 6 2 次関数

$$y = -2x^2$$

のグラフを、頂点が点(3,2)になるように平行移動した放物線をグラフとする2次 関数を求めてみよう。

求める2次関数のグラフは

$$y = -2x^2$$

のグラフを

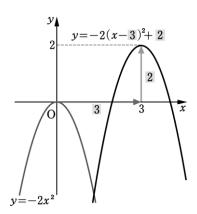
x 軸方向に3

ν軸方向に2

だけ平行移動した放物線である。

よって

$$y = -2(x-3)^2 + 2$$



問9 2次関数 $y=2x^2$ のグラフを、頂点が次の点になるように平行移動した放物線をグラ フとする2次関数を求めよ。

(1) (4, 2)

(2) (7, -3)

- (3) (-3, 5) (4) (-2, -5)

$ax^2 + bx + c = a(x - p)^2 + q$ の変形

78ページの例5でグラフをかいた2次関数

$$y = 2(x - 3)^2 + 4$$

の右辺を展開して整理すると

$$2(x-3)^{2} + 4$$

$$= 2(x^{2} - 6x + 9) + 4$$

$$= 2x^{2} - 12x + 22$$

となる。

したがって、2次関数

$$y = 2x^2 - 12x + 22$$
2

のグラフは、①のグラフと同じものである。

②の形で表された 2 次関数は、①の形に変形すれば、軸や頂点がわかり、グラフをかくことができる。

例7 次の2次関数を $y = (x - p)^2 + q$ の形に変形してみよう。

問 10 次の2次関数を $y = (x - p)^2 + q$ の形に変形せよ。

(1)
$$y = x^2 - 2x$$

$$(2) \quad y = x^2 + 10x$$

(3)
$$y = x^2 + 6x - 2$$

(4)
$$y = x^2 - 4x + 7$$

例8 次の2次関数を $y = (x - p)^2 + q$ の形に変形してみよう。

$$y = x^{2} - 5x + 7 \qquad \qquad x^{2} - \bigcirc x + 7$$

$$= \left(x - \frac{5}{2}\right)^{2} - \left(\frac{5}{2}\right)^{2} + 7 \qquad \left(x - \frac{\bigcirc}{2}\right)^{2} - \left(\frac{\bigcirc}{2}\right)^{2} + 7$$

$$= \left(x - \frac{5}{2}\right)^{2} + \frac{3}{4}$$

問 11 次の 2 次関数を $y = (x - p)^2 + q$ の形に変形せよ。

(1)
$$y = x^2 + 3x + 4$$

(2)
$$y = x^2 + x - 1$$

(3)
$$y = x^2 - 7x - 5$$

(4)
$$y = x^2 - 9x + 21$$

例 9 次の 2 次関数を $y = a(x - p)^2 + q$ の形に変形してみよう。

(2)
$$y = -3x^2 - 6x + 10$$
 _____ x^2 の係数で<<る
 $= -3(x^2 + 2x) + 10$ _____ $-3(x^2 + \bigcirc x) + 10$
 $= -3\{(x+1)^2 - 1^2\} + 10$ _____ $-3\{(x+\frac{\bigcirc}{2})^2 - (\frac{\bigcirc}{2})^2\} + 10$
 $= -3(x+1)^2 + 3 \cdot 1^2 + 10$
 $= -3(x+1)^2 + 13$

問 12 次の 2 次関数を $y = a(x-p)^2 + q$ の形に変形せよ。

$$(1) \quad y = 2x^2 + 4x + 1$$

(2)
$$v = 3x^2 - 12x - 2$$

(3)
$$v = -x^2 + 10x + 7$$

(2)
$$y = 3x^2 - 12x - 2$$

(4) $y = -2x^2 - 6x - 5$

このように、x の 2 次式 a $x^2 + bx + c$ を $a(x-p)^2 + q$ の形に変形することを**平方完成**とい う。

$y = ax^2 + bx + c$ のグラフ

例 10 2 次関数 $y = 2x^2 - 8x + 5$ ……①

のグラフをかいてみよう。

①の式は
$$y = 2(x^2 - 4x) + 5 = 2\{(x - 2)^2 - 2^2\} + 5$$

= $2(x - 2)^2 - 3$

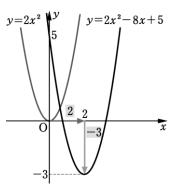
と変形されるから,①のグラフは, $y = 2x^2$ のグラフを x $y = 2x^2$ が動力向に 2, y 軸方向に -3 だけ平行移動した放物線である。したがって,①のグラフは

軸が 直線 x=2

頂点が 点(2, -3)

の下に凸の放物線である。

また, x = 0 のとき y = 5 であるから, グラフはy 軸と点 (0, 5) で交わる。よって, グラフは右の図のようになる。



例題1 2次関数のグラフ

2次関数 $y = -2x^2 - 4x + 3$ のグラフをかけ。

解 与えられた2次関数は

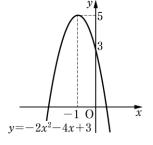
$$y = -2(x^2 + 2x) + 3 = -2\{(x+1)^2 - 1^2\} + 3$$
$$= -2(x+1)^2 + 5$$

と変形される。よって、そのグラフは

軸が 直線 x = -1

頂点が 点 (-1, 5)

の上に凸の放物線である。また、グラフはy軸と点(0, 3)で 交わる。



よって、グラフは右の図のようになる。

問13 次の2次関数のグラフの軸と頂点を求め、そのグラフをかけ。

$$(1) \quad y = x^2 - 4x + 3$$

$$(2) \quad y = 2x^2 + 4x + 3$$

(3)
$$y = -2x^2 - 6x - 3$$

(4)
$$y = \frac{1}{2}x^2 + 2x + 5$$

p.96 Training 2

一般に,2次関数

$$y = ax^2 + bx + c$$

は次のように

$$y = a(x - p)^2 + q$$

の形に変形することができる。

$$y = ax^{2} + bx + c$$

$$= a\left(x^{2} + \frac{b}{a}x\right) + c$$

$$= a\left\{\left(x + \frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right\} + c$$

$$= a\left\{\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a} + c$$

$$= a\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2} - 4ac}{4a}$$

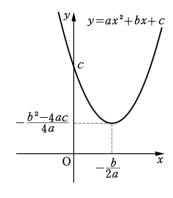
よって、そのグラフは $y = ax^2$ のグラフを平行移動した放物線で、右の図のようになる。

この放物線の

軸は 直線
$$x = -\frac{b}{2a}$$

頂点は 点
$$\left(-\frac{b}{2a}, -\frac{b^2-4ac}{4a}\right)$$

となる。



注意 2次関数 $y = ax^2 + bx + c$ のグラフである放物線を、単に、放物線 $y = ax^2 + bx + c$ ともいう。

放物線 $y = ax^2 + bx + c$ は、放物線 $y = ax^2$ を平行移動したものである。したがって、 x^2 の係数が等しい 2 つの放物線は、一方を平行移動して他方に重ねることができる。

例題2 グラフの平行移動

2 次関数 $y = x^2 + 2x + 3$ のグラフをどのように平行移動すると、2 次関数 $y = x^2 - 6x + 8$ のグラフになるか。

考え方 x^2 の係数がともに 1 であるから、2 つの放物線は平行移動して重ねることができる。よって、頂点の移動について調べるとよい。

解 2つの2次関数を

$$y = x^2 + 2x + 3$$
(1)

$$y = x^2 - 6x + 8$$
2

とおく。

①の2次関数は

$$y = (x+1)^2 + 2$$

と変形できるから, グラフの頂点は点(-1, 2)である。

②の2次関数は

$$y = (x - 3)^2 - 1$$

と変形できるから、グラフの頂点は点(3, -1)である。

問 14 2 次関数 $y = x^2 - 8x + 13$ のグラフをどのように平行移動すると、2 次関数 $y = x^2 - 4x + 2$ のグラフになるか。 p.96 Training 3 p.118 Level Up 1

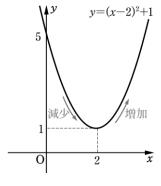
3 2次関数の最大・最小

グラフを利用して、2次関数の最大値・最小値を求めてみよう。

例 11 2 次関数 $y = (x-2)^2 + 1$

のグラフは直線x=2を軸とし、点(2, 1)を頂点とする下に凸の放物線である。

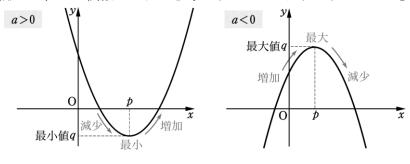
したがって、yの値はx=2で減少から増加に変わるから x=2のとき最小となり、この関数の最小値は1である。また、yの値はいくらでも大きくなるから、この関数の最大値はない。



一般に、2次関数 $y = ax^2 + bx + c$ の最大値または最小値は

$$y = a(x - p)^2 + q$$

と変形して、この関数のグラフを考えることにより求めることができる。



$y = a(x-p)^2 + q$ の最大・最小

2 次関数 $y = a(x - p)^2 + q$ は

a > 0 ならば、x = p で最小値 q をとり、最大値はない。

a < 0 ならば、x = p で最大値 q をとり、最小値はない。

例題3 2次関数の最大・最小[1]

2次関数 $y = -x^2 - 4x + 1$ の最大値または最小値を求めよ。

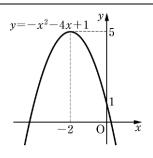
また, そのときのxの値を求めよ。

解 与えられた2次関数は

$$y = -(x^{2} + 4x) + 1$$
$$= -\{(x + 2)^{2} - 2^{2}\} + 1$$
$$= -(x + 2)^{2} + 5$$

と変形される。よって、この関数は x=-2 のとき、最大値 5 をとる。

最小値はない。



問 15 次の 2 次関数の最大値または最小値を求めよ。また、そのときのx の値を求めよ。

(1)
$$y = x^2 - 6x + 7$$
 (2) $y = -x^2 - 2x + 2$

(2)
$$y = -x^2 - 2x + 2$$

p.96 Training 4

例題4 2次関数の最大・最小[2]

2次関数 $y = 2x^2 + 4x + k$ は最小値3をとる。このとき、定数kの値を求めよ。

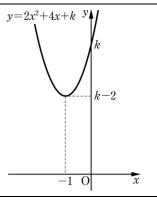
解 与えられた2次関数は

$$y = 2(x^{2} + 2x) + k$$
$$= 2\{(x+1)^{2} - 1^{2}\} + k$$
$$= 2(x+1)^{2} + k - 2$$

と変形される。x = -1 のとき、この関数は最小値 k - 2 をと るから

$$k - 2 = 3$$

よって
$$k=5$$



問 16 2 次関数 $y = -2x^2 + 16x - 3k$ は最大値 5 をとる。このとき、定数 k の値を求めよ。 p.96 Training 5

定義域が限られたときの最大値・最小値

定義域がある範囲に制限されている関数では、関数を表す式の後に()を用いて関数の定 義域を示すことがある。

例題5 定義域が限られたときの最大・最小

次の2次関数の最大値と最小値を求めよ。また、そのときのxの値を求めよ。

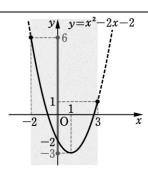
- (1) $y = x^2 2x 2$ $(-2 \le x \le 3)$
- (2) $y = -x^2 + 6x 6$ $(4 \le x \le 6)$

$$y = (x - 1)^2 - 3$$

と変形される。 $-2 \le x \le 3$ におけるこの関数のグラフは、右の図の放物線の実線部分である。よって

$$x = -2$$
 のとき 最大値 6

x = 1 のとき 最小値 -3



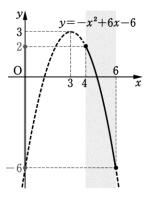
(2) 与えられた 2 次関数は

$$y = -(x - 3)^2 + 3$$

と変形される。 $4 \le x \le 6$ におけるこの関数のグラフは、右の図の放物線の実線部分である。よって

$$x = 4$$
 のとき 最大値 2

$$x = 6$$
 のとき 最小値 -6



問 17 次の 2 次関数の最大値と最小値を求めよ。また、そのときのx の値を求めよ。

(1)
$$y = x^2 + 4x + 3$$
 $(-1 \le x \le 3)$

(2)
$$y = -2x^2 + 4x + 3$$
 $(-2 \le x \le 2)$

p.96 Training 6

Challenge 例題 定義域が変化するときの最大・最小

定義域が変化するときの2次関数の最小値について調べてみよう。

例題

a > 0 のとき、2 次関数 $y = x^2 - 4x + 5$ ($0 \le x \le a$) の最小値を求めよ。

考え方 グラフの軸は直線 x=2 より、定義域に 2 を含まない 0 < a < 2 の場合と、定義域 に 2 を含む $2 \le a$ の場合とに分けて考える。

解 2次関数 $y = x^2 - 4x + 5 = (x - 2)^2 + 1$

のグラフは、軸が直線x=2、頂点が点(2, 1)の下に凸の放物線である。

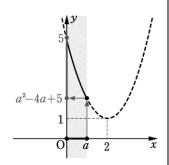
(i) 0 < a < 2 のとき

 $0 \le x \le a$ におけるこの関数のグラフは、右の図の放物線の実線部分である。

よって

 $x = a \mathcal{O}$

最小値 $a^2 - 4a + 5$



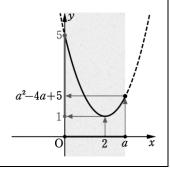
(ii) 2 ≦ a のとき

 $0 \le x \le a$ におけるこの関数のグラフは、右の図の放物線の実線部分である。

よって

x = 2のとき 最小値 1

(i), (ii)より $\begin{cases} 0 < a < 2 \text{ のとき} & x = a \text{ で最小値 } a^2 - 4a + 5 \\ 2 \le a \text{ のとき} & x = 2 \text{ で最小値 } 1 \end{cases}$



問 1 a > 0 のとき、2 次関数 $y = -x^2 + 6x + 1$ ($0 \le x \le a$) の最大値を求めよ。

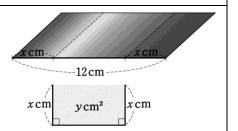
p.118 Level Up 2,3

最大・最小の応用

2次関数の最大・最小の考えを問題に応用してみよう。

例題6 最大・最小の応用

幅 12 cm の銅板を,断面が右の図の形になるように 折り曲げて,深さ x cm の溝をつくる。右の図で示し た部分の面積を $y \text{cm}^2$ とするとき,y の最大値を求 めよ。また,そのときのx の値を求めよ。



解 底の幅は (12-2x)cm である。

深さや底の幅は正であるから

$$x > 0$$
, $12 - 2x > 0$

すなわち

$$0 < x < 6$$
 ······①

面積 ycm² は

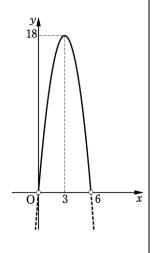
$$y = x(12 - 2x)$$

$$= -2x^{2} + 12x$$

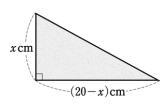
$$= -2(x - 3)^{2} + 18$$

①におけるこの関数のグラフは、右の図の放物線の実線部分である。

よって, x = 3 のとき, y は最大値 18 をとる。



問 18 直角をはさむ 2 辺の長さの和が 20cm であるような直角 三角形の面積の最大値を求めよ。



4 2次関数の決定

2 次関数のグラフについて、いくつかの条件が与えられているとき、その条件を満たす 2 次関数を求めてみよう。

頂点に関する条件が与えられたとき

例題7 2次関数の決定ーグラフの頂点

グラフが点(1, -3)を頂点とし、点(-1, 5)を通る放物線になるような2次関数を求めよ。

 \mathbf{M} 頂点が点(1, -3)であるから、求める2次関数は

$$y = a(x-1)^2 - 3$$
 ·····① $y = a(x-p)^2 + q$ の グラフの頂点は点 (p, q)

と表される。

また, グラフが点 (-1, 5) を通るから, ①の式において

$$x = -1$$
 のとき $y = 5$

である。

よって

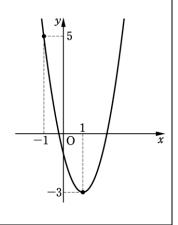
$$5 = a(-1-1)^2 - 3$$

tab5 5 = 4a - 3

ゆえに a=2

したがって、求める2次関数は

$$y = 2(x - 1)^2 - 3$$



- 問19 グラフが次の条件を満たす放物線になるような2次関数を求めよ。
 - (1) 頂点が点(-1, -5)で、点(1, 11)を通る。
 - (2) 頂点が点(2, -1)で、点(-1, -19)を通る。

p.96 Training 7(1)

軸に関する条件が与えられたとき

例題8 2次関数の決定ーグラフの軸

グラフが直線 x=2 を軸とし、2 点 (3, 3)、(0, 9) を通る放物線になるような 2 次関数を求めよ。

解 軸が直線 x=2 であるから、求める 2 次関数は

グラフが点(3,3)を通るから

$$3 = a(3-2)^2 + q$$

tab = a + q = 3

また, グラフが点(0,9)を通るから

$$9 = a(0-2)^2 + q$$

tan + q = 9

よって

$$\begin{cases} a+q=3 & \cdots \\ 4a+q=9 & \cdots \\ 2 \end{cases}$$

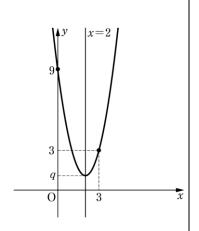
tab 5 a = 2

① \sharp \emptyset q = 3 - a

= 3 - 2 = 1

したがって、求める2次関数は

$$y = 2(x - 2)^2 + 1$$



- 問 20 グラフが次の条件を満たす放物線になるような 2 次関数を求めよ。
 - (1) 軸が直線 x = -2 で、2 点 (1, -1), (-2, 2) を通る。
 - (2) 頂点のx座標が3で、2点(-2, 13)、(6, -3)を通る。

p.96 Training 7(2)

グラフ上の3点が与えられたとき

例題9 2次関数の決定ーグラフ上の3点

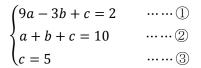
グラフが 3 点 A(-3, 2), B(1, 10), C(0, 5) を通る放物線になるような2次関数を求 めよ。

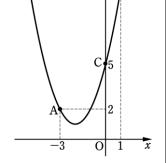
解 求める2次関数を $y = ax^2 + bx + c$ とする。

グラフが点 A(-3, 2) を通るから

$$2 = a \cdot (-3)^2 + b \cdot (-3) + c$$

さらに、グラフが点B(1, 10)、点C(0, 5)を通ることから、 同様な式をつくって整理すると





10

である。まず、①、2のcを消去する。 — 1文字を消去する

①, ③
$$\sharp$$
 \mathfrak{h} 9 $a - 3b = -3$

すなわち
$$3a-b=-1$$
 ……④ 2 文字の連立方程

②, ③より
$$a+b=5$$
 ·····⑤

④+⑤より
$$4a = 4$$
 すなわち $a = 1$

(5)
$$\sharp$$
 (9) $b = 5 - a = 5 - 1 = 4$

よって、求める 2 次関数は
$$y = x^2 + 4x + 5$$

例題9の解における①,②,③のように、3文字についての1次方程式を連立したものを 連立3元1次方程式という。連立3元1次方程式を解くには、1つずつ文字を消去していけ ばよい。

問 21 グラフが次の条件を満たす放物線になるような 2 次関数を求めよ。

- (1) 3点(0, 1), (2, 1), (3, 7)を通る。
- (2) 3 点 (-2, 0), (0, 2), (1, -3) を通る。 p.96 Training 7(3)、p.118 Level Up 4.5、

参考 連立3元1次方程式の解法

連立3元1次方程式を解くには、まず、1つの文字を消去し、他の2つの文字についての 連立方程式を解く。さらに、得られた値を代入して、残りの文字の値を求めればよい。

例1 次の連立3元1次方程式を解いてみよう。

$$\begin{cases} 2x - 2y + z = 9 & \cdots \\ 2x - 3y + 3z = 16 & \cdots \\ 3x + 2y - 2z = -2 & \cdots \end{cases}$$

まず、文字zを消去する。

$$4x - 3y = 11$$

①
$$\times 2 + 3 \downarrow 9$$
 $7x - 2y = 16$ ⑤

$$7x - 2y = 16$$

次に、④、⑤を連立させて文字 y を消去する。

$$-13x = -26$$

よって
$$x = 2$$
 ······⑥

⑥を④に代入して y の値を求めると

$$v = -1$$
 ·····(7)

⑥, ⑦を①に代入してzの値を求めると

$$z = 3$$

したがって x=2, y=-1, z=3

①連立3元1次方程式

■ 1 文字を消去

②2文字の連立方程式

■ 解く

③2文字の値がわかる

■ ①の式に代入

4残りの文字の値がわ かる

問1 次の連立3元1次方程式を解け。

(1)
$$\begin{cases} x + y + 2z = -3\\ 4x - 2y + z = -1\\ 16x - 4y + 3z = 17 \end{cases}$$

(2)
$$\begin{cases} x + 2y + 3z = 20 \\ 2x + 7y - 3z = 13 \\ 3x + 8y + 2z = 38 \end{cases}$$

問 \mathbf{Z} グラフが $\mathbf{3}$ 点 $(\mathbf{1},\mathbf{6})$, $(\mathbf{-2},\mathbf{-9})$, $(\mathbf{4},\mathbf{3})$ を通る放物線になるような $\mathbf{2}$ 次関数を求 めよ。

参考 グラフの平行移動

例 1 2 次関数 $y = x^2 - 2x + 2$ ······①

のグラフを

x 軸方向に1

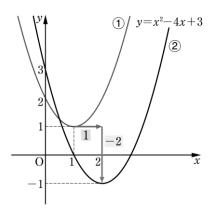
y 軸方向に −2

だけ平行移動した放物線をグラフとする 2 次関数を求めてみよう。

①のグラフは

$$y = (x - 1)^2 + 1$$

より, 点 (1, 1) を頂点とする下に凸の放物線である。



この放物線をx 軸方向に 1, y 軸方向に -2 だけ平行移動すると, その頂点は点 (2, -1) となる。また, x^2 の係数が 1 であるから, 求める 2 次関数は $y = (x-2)^2 - 1$ すなわち $y = x^2 - 4x + 3$ ……②

一般に、関数 y = f(x) のグラフを x 軸方向に p, y 軸方向に q だけ平行移動したグラフの関数は、x を x - p に、y を y - q に置き換えた

$$y-q=f(x-p)$$
 $\Rightarrow tx \Rightarrow t$ $y=f(x-p)+q$

である。

例1において、①でxをx-1に、yをy+2に置き換えると $y+2=(x-1)^2-2(x-1)+2 \quad \text{that} \quad y=x^2-4x+3$ となり、②が得られる。

間 1 2 次関数 $y = x^2 + 4x + 5$ のグラフを x 軸方向に -3, y 軸方向に 1 だけ平行移動した 放物線をグラフとする 2 次関数を求めよ。

グラフの対称移動

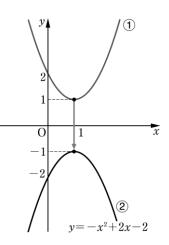
例 1 2 次関数 $y = x^2 - 2x + 2$ ·····①

のグラフを x 軸に関して対称移動した放物線をグラフとす る2次関数を求めてみよう。

①のグラフは、点(1,1)を頂点とする下に凸の放物線であ

この放物線をx軸に関して対称移動するとその頂点は 点(1, -1)となり、上に凸の放物線となる。よって、求め る2次関数は

$$y = -(x-1)^2 - 1$$
 すなわち $y = -x^2 + 2x - 2$ ②



一般に、関数 y = f(x) のグラフを x 軸に関して対称移動したグラフの関数は、y を -y に 置き換えた

$$-y = f(x)$$
 $\Rightarrow tabbox{ } y = -f(x)$

である。例1において、①でyを-yに置き換えると

$$-y = x^2 - 2x + 2$$
 $\Rightarrow x \Rightarrow y = -x^2 + 2x - 2$

となり、②が得られる。

同様に、関数 y = f(x) のグラフを

y軸に関して対称移動したグラフの関数は

原点に関して対称移動したグラフの関数は -y = f(-x)

$$tabs \quad y = -f(-x)$$

y = f(-x)

である。

問 1 2 次関数 $y = -x^2 - 6x - 2$ のグラフを x 軸, y 軸, 原点に関して対称移動した放物線 をグラフとする2次関数をそれぞれ求めよ。

Training

1 $f(x) = x^2 - 3x + 4$ において、次の値を求めよ。

- (1) f(2)
- (2) f(a) (3) f(a-1) (4) f(2-a)

_p.72

2 次の2次関数のグラフをかけ。

- (1) $y = 2x^2 12x + 16$
- $(2) \quad y = -x^2 + 8x 15$
- (3) $y = -\frac{1}{2}x^2 x + \frac{3}{2}$
- (4) y = (x+2)(x-4)

p.83

3 2次関数 $y = -2x^2 - 8x - 5$ のグラフをどのように平行移動すれば、2次関数 $y = -2x^2 + 4x - 3$ のグラフになるか。

p.84

4 次の2次関数の最大値または最小値を求めよ。また、そのときのxの値を求めよ。

- (1) $y = 3x^2 + 6x + 5$ (2) $y = -x^2 + 2x + 1$

p.86

- 5 2次関数 $y = -x^2 + 2kx + 7$ は x = 3 のとき最大値をとる。このとき、定数 k の値を求め よ。また、この関数の最大値を求めよ。
- 6 次の2次関数の最大値と最小値を求めよ。また、そのときのxの値を求めよ。
 - (1) $y = -2x^2 4x + 1 \quad (-2 \le x \le 1)$

(2)
$$y = \frac{1}{2}x^2 - 4x + 5$$
 $(6 \le x \le 8)$

p.87

- 7 グラフが次の条件を満たす放物線になるような2次関数を求めよ。
 - (1) 頂点が(-2, 7)で、点(1, -2)を通る。
 - (2) x = -1 を軸とし、2点(-2, -3), (1, 3) を通る。
 - (3) 3 点 (-1, -8), (0, 1), (2, 1) を通る。
 - p.90-92 (4) x軸と点(-2, 0), (3, 0)で交わり, y軸と点(0, -3)で交わる。