小テスト	•	No.22	2 次関数	関数			
		年	組		番	名前	/20

- **1.** 次の関数 f(x) について、f(3), f(-2), f(a-1) をそれぞれ求めよ。
 - $(1) \quad f(x) = 3x 2$

 $(2) \quad f(x) = -x^2$

- 2. 次の関数のグラフをかいて、値域を求めよ。
 - (1) $y = 3x 2 \ (2 \le x \le 5)$

(2) $y = -2x + 1 \ (-2 \le x \le 2)$

小テスト	•	No.23	2 次関数	2 次関数の	グラフ (1)	
		年	組	番	名前	/20

- 1. 次の2次関数のグラフの軸と頂点を求め、そのグラフをかけ。
 - (1) $y = 3x^2$

(2) $y = -x^2$

(3)
$$y = 2x^2 - 2$$

$$(4) \quad y = -\frac{1}{2}x^2 + 3$$

(5)
$$y = \frac{1}{3}(x-2)^2$$

(6)
$$y = -2(x+1)^2$$

小テスト	•	No.24	2 次関数	2 次関数の	グラフ(2)	
		年	組	番	名前	/20

- 1. 次の2次関数のグラフの軸と頂点を求め、そのグラフをかけ。
 - (1) $y=(x-3)^2+2$

(2) $y = 2(x-2)^2 - 3$

(3) $y = -3(x+1)^2 + 4$

- **2.** 2次関数 $y=3x^2$ のグラフを,頂点が次の点になるように平行移動した放物線をグラフ とする2次関数を求めよ。
 - (1) (5, 6)

(2) (-3, -1)

小テスト	,	No.25	2 次関数	$ax^2+bx+c=a(x-p)^2+q$ の変形		
		年	組	番	名前	/20

- **1.** 次の2次関数を $y=(x-p)^2+q$ の形に変形せよ。
 - (1) $y=x^2-4x+2$

(2) $y = x^2 + 3x - 1$

2. 次の2次関数を $y=a(x-p)^2+q$ の形に変形せよ。

(1)
$$y = 2x^2 - 8x + 4$$

(2)
$$y = -3x^2 - 18x + 9$$

(3)
$$y = 2x^2 - 6x + 3$$

小テスト	•	No.26	2 次関数	2 次関数の	グラフ (3)	
		年	組	番	名前	/20

1. 次の2次関数のグラフの軸と頂点を求め、そのグラフをかけ。

(1)
$$y = x^2 - 2x - 1$$

(2)
$$y = 2x^2 + 4x + 2$$

$$(3) \quad y = -3x^2 + 9x - 5$$

$$(4) \quad y = \frac{1}{2}x^2 - 4x + 5$$

2. 2次関数 $y=x^2+4x+3$ のグラフをどのように平行移動すると, 2次関数 $y=x^2-6x+7$ のグラフになるか。

小テスト	•	No.27	2 次関数	2 次関数の最大・最小(1)			
		年	組	番	名前	/20	

1. 次の2次関数の最大値または最小値を求めよ。また、そのときのxの値を求めよ。

(1)
$$y=2x^2+8x+9$$

$$(2) \quad y = -x^2 + 4x + 2$$

(3)
$$y = \frac{1}{2}x^2 + 3x$$

2. 2次関数 $y=3x^2-6x+k$ は最小値 -1 をとる。このとき、定数k の値を求めよ。

小テスト	•	No.28	2 次関数	2 次関数の	最大・最小(2)	
		年	組	番	名前	/20

- 1. 次の2次関数の最大値と最小値を求めよ。また、そのときのxの値を求めよ。
 - (1) $y=2x^2-4x+1 \ (0 \le x \le 3)$

(2)
$$y = -x^2 + 4x$$
 $(-1 \le x \le 3)$

2. 直角をはさむ2辺の長さの和が10であるような直角三角形の斜辺の長さの2乗の最小値を求めよ。

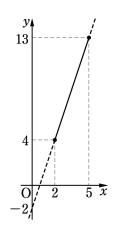
小テスト解答 No.22 2 次関数 関数

1. (1) $f(3) = 3 \times 3 - 2 = 7$ $f(-2) = 3 \times (-2) - 2 = -8$ f(a-1) = 3(a-1) - 2 = 3a - 5

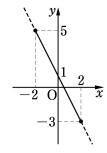
(2)
$$f(3) = -3^2 = -9$$

 $f(-2) = -(-2)^2 = -4$
 $f(a-1) = -(a-1)^2 = -a^2 + 2a - 1$
(各 3 点)

2. (1) グラフは右の図の通り。 値域は $4 \le y \le 13$



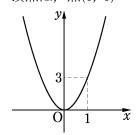
(2) グラフは右の図の通り。 値域は $-3 \le y \le 5$



(グラフ:各4点) (値域:各3点)

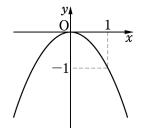
小テスト解答 No.23 2 次関数 2 次関数のグラフ (1)

1. (1) 軸は,直線 x=0 頂点は,点(0,0)



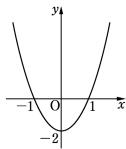
(2点)

(2) 軸は、直線 x=0 頂点は、点(0,0)



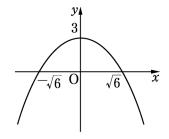
(2点)

(3) 軸は、直線 x=0 頂点は、点(0, -2)



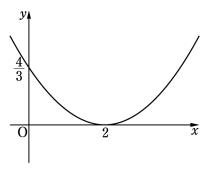
(4点)

(4) 軸は,直線 x=0 頂点は,点(0,3)



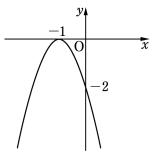
(4点)

(5) 軸は、直線 x=2 頂点は、点(2,0)



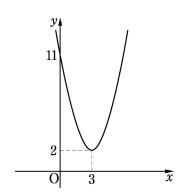
(4点)

(6) 軸は、直線 x=-1 頂点は、点(-1,0)

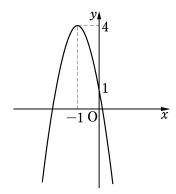


(4点)

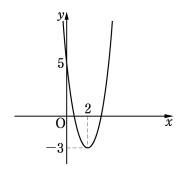
1. (1) 軸は,直線 x=3 頂点は,点(3,2)



(3) 軸は、直線 x=-1 頂点は、点(-1, 4)



(2) 軸は、直線 x=2 頂点は、点(2, -3)



(各 4 点)

2. (1) $y=3(x-5)^2+6$

(2)
$$y=3(x+3)^2-1$$
 (4 4 点)

小テスト解答 No.25 2 次関数 $ax^2+bx+c=a(x-p)^2+q$ の変形

1. (1)
$$y=x^2-4x+2$$

= $(x-2)^2-2^2+2$
= $(x-2)^2-2$

(2)
$$y=x^2+3x+1$$

= $\left(x+\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2-1$
= $\left(x+\frac{3}{2}\right)^2-\frac{13}{4}$

(各4点)

2. (1)
$$y = 2x^2 - 8x + 4$$

= $2(x^2 - 4x) + 4$
= $2\{(x-2)^2 - 2^2\} + 4$
= $2(x-2)^2 - 4$

(2)
$$y = -3x^2 - 18x + 9$$

 $= -3(x^2 + 6x) + 9$
 $= -3\{(x+3)^2 - 3^2\} + 9$
 $= -3(x+3)^2 + 36$

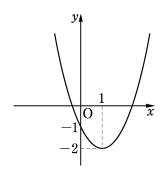
(3)
$$y = 2x^2 - 6x + 3$$

 $= 2(x^2 - 3x) + 3$
 $= 2\left(\left(x - \frac{3}{2}\right)^2 - \left(\frac{3}{2}\right)^2\right) + 3$
 $= 2\left(x - \frac{3}{2}\right)^2 - \frac{3}{2}$

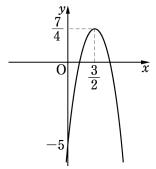
(各 4 点)

小テスト解答 No.26 2 次関数 2 次関数のグラフ (3)

1. (1) $y=x^2-2x-1$ $=(x-1)^2-1^2-1$ $=(x-1)^2-2$ 軸は,直線 x=1頂点は,点(1, -2)

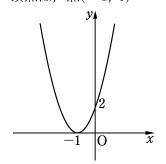


(3) $y = -3x^2 + 9x - 5$ $= -3(x^2 - 3x) - 5$ $= -3\{\left(x - \frac{3}{2}\right)^2 - \left(\frac{3}{2}\right)^2\} - 5$ $= -3\left(x - \frac{3}{2}\right)^2 + \frac{7}{4}$ 軸は、直線 $x = \frac{3}{2}$ 頂点は、点 $\left(\frac{3}{2}, \frac{7}{4}\right)$



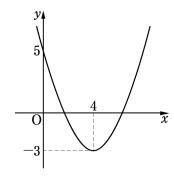
(2) $y=2x^2+4x+2$ = $2(x^2+2x)+2$ = $2\{(x+1)^2-1^2\}+2$ = $2(x+1)^2$

軸は、直線 x=-1 頂点は、点(-1,0)



(4) $y = \frac{1}{2}x^2 - 4x + 5$ $= \frac{1}{2}(x^2 - 8x) + 5$ $= \frac{1}{2}\{(x - 4)^2 - 4^2\} + 5$ $= \frac{1}{2}(x - 4)^2 - 3$

軸は、直線 x=4 頂点は、点(4, -3)



(各4点)

2.
$$y=x^2+4x+3$$

= $(x+2)^2-1$ (1)

$$y=x^2-6x+7$$

= $(x-3)^2-2$ (2)

①,②のグラフは $y=x^2$ のグラフを平行移動したもので,頂点はそれぞれ(-2,-1)と(3,-2)である。

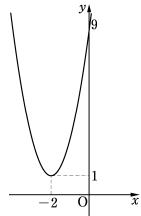
したがって、①のグラフをx 軸方向に5, y 軸方向に-1 だけ平行移動すれば②のグラフになる。 (4点)

小テスト解答 No.27 2次関数 2次関数の最大・最小(1)

1. (1)
$$y = 2x^2 + 8x + 9$$

= $2(x^2 + 4x) + 9$
= $2\{(x+2)^2 - 2^2\} + 9$
= $2(x+2)^2 + 1$

グラフは下の図のようになるから, x = -2 のとき最小値1 をとる。 最大値はない。



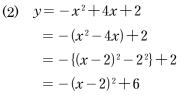
$$y = \frac{1}{2}x^2 + 3x$$

(3)
$$y = \frac{1}{2}x^2 + 3x$$

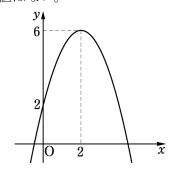
 $= \frac{1}{2}(x^2 + 6x)$
 $= \frac{1}{2}\{(x+3)^2 - 3^2\}$
 $= \frac{1}{2}(x+3)^2 - \frac{9}{2}$

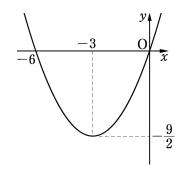
グラフは右の図のようになるから, x=-3 のとき最小値 $-\frac{9}{2}$ をとる。

最大値はない。



グラフは下の図のようになるから, x=2 のとき最大値6 をとる。 最小値はない。





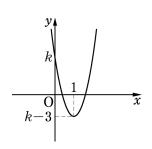
(各5点)

2.
$$y=3x^2-6x+k$$

= $3(x^2-2x)+k$
= $3\{(x-1)^2-1^2\}+k$
= $3(x-1)^2+k-3$

x=1 のとき、この関数は最小値k-3 をとるから k-3 = -1

よって k=2



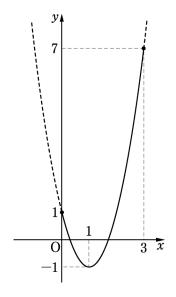
小テスト解答 No.28 2次関数 2次関数の最大・最小(2)

1. (1) $y=2x^2-4x+1$ = $2(x-1)^2-1$

> $0 \le x \le 3$ の範囲で、グラフは下の図の 実線部分となる。

よって

$$x=3$$
 のとき最大値 7 $x=1$ のとき最小値 -1



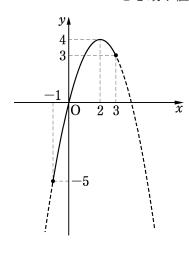
(2)
$$y = -x^2 + 4x$$

= $-(x-2)^2 + 4$

 $-1 \le x \le 3$ の範囲で、グラフは下の 図の実線部分となる。

よって

$$x=2$$
 のとき最大値 4 $x=-1$ のとき最小値 -5



(各5点)

2. 右の図のように、直角をはさむ2 辺の長さをx cm 、(10-x) cm とする。

$$x > 0$$
, $10 - x > 0$

$$\downarrow \emptyset \qquad 0 < x < 10 \quad \cdots \cdots \bigcirc$$

斜辺の長さの2乗yは

$$y=x^{2}+(10-x)^{2}$$

$$=2x^{2}-20x+100$$

$$=2(x-5)^{2}+50$$

①におけるこの関数のグラフは, 右の図の放物線の実線部分である。 よって,

x=5のとき,最小値 50

