):整式の項の中で、文字を含まない項。

1 ヵ 式の計算

(11

1 整式	例 $4x^2 + xy^2 - 2x + y + 5$ を x について整理すると
単項式と多項式 (教科書 p.6)	
数,文字およびそれらの積として表される式を(¹)という。	となり、 x については()次式で,定数項は()である。
単項式において、掛け合わされている文字の個数をその単項式の(²)といい、数の	$\overline{}$ の整式は何次式で,定数項は何か。また, x については何次式で,その場合の定数項は何か。
部分を単項式の(³)という。	$(1) 5x^3 - 3x^2y^3 + y^4 - 8$
例 1 (1) 2a の次数は (), 係数は ()	
(2) $-x^2y$ の次数は(),係数は()	
(3) 定数 3 は文字を含まないから,次数は (),係数は ()	
 問1 次の単項式の次数と係数を答えよ。	
(1) $5a^4$ (2) xy^3 (2) -7	$(2) x^3 + x^2y - y^2 + 7x - 4y + 1$
例 2 $-3x^2yz$ は,文字 x に着目すると, 次数は(),係数は()	
文字 x と y に着目すると, 次数は(),係数は()	
<u>問2</u> 〔 〕内の文字に着目したとき,次の単項式の次数と係数を答えよ。	
$(1) 4x^2y^3 \qquad [y] \qquad (2) -2a^2bc^4 \qquad [b \succeq c]$	(12)):ある1つの文字に着目して整式を整理するとき,次数の高い項から順
	に並べること。
	(¹³): 次数の低い項から順に並べること。
(4): 単項式の和として表される式。	例 5 $x^2 + y^2 - 4xy + 5x + 3y + 2 を x について降べきの順に整理すると$
(⁵): 多項式の1つ1つの単項式。	
(⁶): 単項式と多項式をあわせたもの。	
	一一 \mathbb{B}^{5} 次の整式を x について降べきの順に整理せよ。
整式の整理 (教科書 p.7)	$(1) 5x^2 - 2 + 7x^3 - 3x$
$(^7$): $2x^2y + 4xy + 3x^2y$ における $2x^2y$, $3x^2y$ のように,文字の部分が同じ項の	
こと。	
同類項を1つにまとめて式を簡単にすることを,整式を(⁸)という。	$(2) 2x^2 + 5xy + y^2 - x + 5y - 4$
問3 整式 $3x^2y + 4xy - 7x^2y + 5xy - 4$ を整理せよ。	
(⁹): 整理された整式で,各項の次数のうち最も高いもの。	
(10): 次数がnの整式。	

例 $34x^2 + xy^2 - 2x + y + 5$ は、() 次式で、定数項は (

)である。

2 整式の加法・減法・乗法

整式の加法・減法

例 6 整式 $A = 4x^2 - 3x + 10$, $B = -2x^2 + 6$ のとき

$$A + B =$$

◆かっこをはずす

◀ 同類項をまとめる

$$A - B =$$

◆かっこをはずす

◀ 同類項をまとめる

問6 次の整式 A, B について, A+B, A-B を求めよ。

(1)
$$A = x^3 - 4x^2 - 3$$
, $B = 3x^3 - 5x^2 - x + 3$

(2)
$$A = 2x^2 + y^2$$
, $B = -x^2 - 3xy + y^2$

(教科書 p.8)

例 7
$$A = x^2 + x - 3$$
, $B = 2x^2 - x - 4$ のとき $3A - 2B =$

問7
$$A = 3x^2 + 2x + 1$$
, $B = -x^2 + 3x - 5$ のとき,次の式を計算せよ。
(1) $A + 3B$

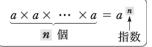
(2)
$$2A - B$$

(3)
$$5(A - B) - 3A$$

指数法則

(教科書p.9)

a をいくつか掛けたものをa の(1)という。a をn 個掛けたものをa の(2)といい, a^n と表す。このとき,n を a^n の(3)という。



とくに, $a^1 = a$ である。

一般に次の(4

)が成り立つ。

指数法則

m, nが正の整数のとき

$$a^m a^n = a^{m+n},$$

$$(a^m)^n = a^{mn},$$

$$(ab)^n = a^n b^n$$

例 $a^3 \times a^5 =$

$$(a^4)^3 =$$

 $(a^2b)^4 =$

問8 次の計算をせよ。

 $(1) \quad a^6 \times a^2$

 $(2) (ab^3)^3$

(3) $(x^3)^5 \times x^2$

(4) $x^3 \times (x^2y^3)^4 \times y^2$

単項式の積は、係数、文字の部分の積をそれぞれ計算すればよい。

9 $3x^2y^4 \times (-2x^4y)^3 =$

問9 次の計算をせよ。

- (1) $2a^3 \times \frac{1}{4}a^4$
- (2) $4a^2b^4 \times (-a^6b)$
- (3) $(-3x^2)^4 \times (x^3)^2$
- (4) $64x^3y \times \left(\frac{1}{2}xy^2\right)^5$

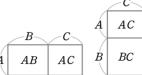
式の展開

整式の積を計算するには、次の分配法則を用いる。

$$A(B+C) = AB + AC$$

$$(A+B)C = AC + AC$$

(5): 整式の積を単項式の和の形に表すこと。



(教科書 p.10)

例
$$\overline{10}$$
 $7x(x^2 + 3xy - 2y^2) =$

<u>間 10</u> 次の式を展開せよ。

(1)
$$3x(2x-7)$$

(2)
$$(3x^2 - 2x + 1) \times 5x^3$$

(3)
$$-4xy(2x^2 - xy + y^2)$$

例
$$\boxed{11}$$
 $(4x+5)(x^2+3x-2) =$

問11 次の式を展開せよ。

(1)
$$(x+6)(2x+3)$$

(2)
$$(5x-4)(3x+7)$$

(3)
$$(x+4)(2x^2-8x+5)$$

(4)
$$(2x-7)(4x^2-2x+3)$$

乗法公式

 $\boxed{1} \quad (a+b)^2 = a^2 + 2ab + b^2$

$$\boxed{2} \quad (a-b)^2 = a^2 - 2ab + b^2$$

$$\boxed{\exists} \quad (a+b)(a-b) = a^2 - b^2$$

$$4$$
 $(x+a)(x+b) = x^2 + (a+b)x + ab$

例 12 (1)
$$(2x+3y)^2 =$$

(2)
$$(5x - y)^2 =$$

(3)
$$(4x + 7y)(4x - 7y) =$$

$$(4) \quad (x+3)(x+6) =$$

問 12 次の式を展開せよ。

$$(1) (3x + y)^2$$

$$(2) (8x - 3y)^2$$

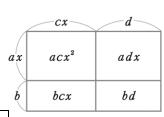
(3)
$$(6x + 5y)(6x - 5y)$$

(4)
$$(x+2)(x-7)$$

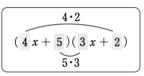
(教科書p.11)

x についての 1 次式の積は次のようになる。

$$(ax + b)(cx + d) = ax(cx + d) + b(cx + d)$$
$$= acx^{2} + adx + bcx + bd$$
$$= acx^{2} + (ad + bc)x + bd$$



例 13
$$(4x+5)(3x+2)$$
 =



<u>間 13 次の式を展開せよ。</u>

(1)
$$(2x+1)(5x+2)$$

(2)
$$(3x-4)(2x+5)$$

例 14
$$(3x - 7y)(x + 3y) =$$

----問 14 次の式を展開せよ。

(1)
$$(x-3y)(4x-y)$$

(2)
$$(4x + y)(3x - 2y)$$

展開の工夫

(教科書 p.12)

例 15 (a+b+c)(a-b+c) =

 $\blacktriangleleft (A+b)(A-b)$

 $\blacktriangleleft A^2 - b^2$

<u>間 15 次の式を展開せよ。</u>

(1)
$$(a+b)(a+b-5)$$

(2)
$$(a-b+3)(a-b-7)$$

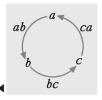
(3)
$$(x - y - z)(x + y - z)$$

(4)
$$(x + y - z)(x - y + z)$$

例題 次の等式が成り立つことを示せ。

$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$$

$$(a+b+c)^2$$



<u>□ 16</u> 次の式を展開せよ。

(1)
$$(a+b-c)^2$$

(2)
$$(a-b-c)^2$$

(3)
$$(x-2y+3z)^2$$

例題 次の式を展開せよ。

2 (1)
$$(x+2)(x+3)(x-2)(x-3)$$

(2)
$$(a+b)^2(a-b)^2$$

解 (1)

(2)
$$(a+b)^2(a-b)^2$$

<u>問 17</u> 次の式を展開せよ。

(1)
$$(x+2)(x+5)(x-2)(x-5)$$

(2)
$$(x+1)(x+2)(x+3)(x+4)$$

(3)
$$(a+2b)^2(a-2b)^2$$

$$(4) \quad (2x - 3y)^2 (2x + 3y)^2$$

問 18
$$(a^2+1)(a+1)(a-1)$$
 を展開せよ。

3 因数分解

(1

):整式を1次以上のいくつかの整式の積の形

に表すこと。

(x+a)(x+b)展開↓ †因数分解 $x^2+(a+b)x+ab$

(2

): 積をつくる各整式。

共通因数をくくり出すこと

(教科書 p.14)

整式の各項に共通な因数があるとき、それをかっこの外にくくり出して、整式を因数分解することができる。 ma+mb=m(a+b)

例 $\boxed{16}$ (1) $6a^2b + 8ab^2 =$

(2)
$$2xy^2 - y^2 =$$

問19次の式を因数分解せよ。

- (1) $9a^2b 6ac$
- $(2) \quad 3x^2yz + yz$
- (3) $3a^3b^2 6a^2b^3 + 12a^2b^2c$
- 例 17(1) a(a+3)-2b(a+3) =
 - (2) a(x-y) + b(y-x) =

問 20 次の式を因数分解せよ。

(1)
$$(x + 5y)y - (x + 5y)z$$

(2)
$$4x(y-2) + y - 2$$

(3)
$$(3a - b)x - 3a + b$$

(4)
$$a(b-c) - 2c + 2b$$

2次式の因数分解

$$\boxed{1} \quad a^2 + 2ab + b^2 = (a+b)^2$$

$$\boxed{2} \quad a^2 - 2ab + b^2 = (a - b)^2$$

$$3 \quad a^2 - b^2 = (a+b)(a-b)$$

$$\boxed{4} \quad x^2 + (a+b)x + ab = (x+a)(x+b)$$

例
$$18$$
 (1) $x^2 + 6xy + 9y^2 =$

(2)
$$9x^2 - 24xy + 16y^2 =$$

(3)
$$36x^2 - 25y^2 =$$

$$(4) \quad x^2 - 9x - 22 =$$

(教科書 p.15)

- 問 21 次の式を因数分解せよ。
 - $(1) \quad 16x^2 + 8x + 1$
 - (2) $4x^2 28xy + 49y^2$
 - (3) $64x^2 81y^2$
 - (4) $x^2 + 13x 30$
- 例 19 $9x^3y 16xy^3 =$
- 間22 次の式を因数分解せよ。
 - $(1) \quad 25x^4 4x^2y^2$
 - (2) $ax^2 + 12ax + 36a$
 - (3) $x^3 2x^2 48x$
 - (4) $(a-b)x^2 + (b-a)y^2$

- $\boxed{5} \quad acx^2 + (ad + bc)x + bd = (ax + b)(cx + d)$
- 例 20 $3x^2 + 2x 5$ を因数分解してみよう。

この式と公式5の左辺を比べて,

$$ac = 3$$
, $ad + bc = 2$, $bd = -5$ を満たす a , b , c , d の組を見つければよい。まず, $ac = 3$ を満たす整数 a , c の組は,

a > 0, c > 0とすると

$$\begin{cases} a = \\ c = \end{cases} \begin{cases} a = \\ c = \end{cases}$$

また, bd = -5 を満たす整数 b, d の組は

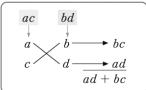
$$\begin{cases} b = \\ d = \end{cases} \begin{cases} b = \\ d = \end{cases} \begin{cases} b = \\ d = \end{cases} \begin{cases} b = \\ d = \end{cases}$$

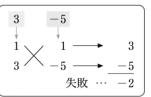
がある。

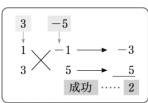
これらの組について、右のような形式の計算に よって、ad+bc=2を満たすa, b, c, d の組を 見つける。

ゆえに ()

):このような因数分解の方法のこと。







8

問 23 次の式を因数分解せよ。

$$(1) \quad 2x^2 + 3x + 1$$

(2)
$$3x^2 - 5x - 2$$

(3)
$$5x^2 + 7x - 6$$

$$(4) \quad 8x^2 + 6x - 5$$

(5)
$$6x^2 - 5x - 6$$

(6)
$$4x^2 - 16x + 15$$

列	21 8x² – 26xy + 15y² を因数分解し	てみよう。	
	この式を, x についての 2 次式	はと考える	ح.
	<i>x</i> の係数は ()	$4 \times (-3v) \longrightarrow -6v$
	定数項は()	$\begin{array}{c c} & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & & \\ & \\ & & \\ & & \\$
	である。		$\frac{2}{-26y}$
	したがって,右の計算より		
	()

問 24 次の式を因数分解せよ。

$$(1) \quad 7x^2 + 11xy + 4y^2$$

(2)
$$12x^2 - xy - 6y^2$$

因数分解の工夫

(教科書 p.17)

式の一部をひとまとめにして、1つの文字のようにみなすことにより、公式を利用して因数分解 できることがある。

例題 次の式を因数分解せよ。

3 (1) $(a+b)^2-c^2$

(2) (x-2y)(x-2y+5)+6

解 (1)

(2)

間 25 次の式を因数分解せよ。

(1)
$$(a+4b)^2-b^2$$

(2)
$$9x^2 - (y-z)^2$$

(3)
$$(x-y)^2 + 4(x-y) - 45$$

(4)
$$(2a+b)(2a+b-9)+20$$

 $a^3 - ab^2 - b^2c + a^2c$ を因数分解せよ。

4

ightharpoonup この式は a について 3 次式,b について 2 次式,c について 1 次式であるから,最も次数の低

$$a^3 - ab^2 - b^2c + a^2c =$$

問26次の式を因数分解せよ。

$$(1) \quad 4xy^2 - 4y^2 - x + 1$$

(2)
$$a^3 - 9ab^2 + a^2c - 9b^2c$$

応 用 例題

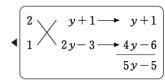
$$2x^2 + 5xy + 2y^2 - 5x - y - 3$$
 を因数分解せよ。

5

解

この式は x, y のどちらの文字についても 2 次式であるから, たとえば, x について整理する。 $2x^2 + 5xy + 2y^2 - 5x - y - 3$

=



問 27 次の式を因数分解せよ。

(1)
$$x^2 + 3xy + 2y^2 + 5x + 7y + 6$$

(2)
$$2x^2 - 3xy - 2y^2 + x + 3y - 1$$

応 用 例題

$$a^{2}(b-c)+b^{2}(c-a)+c^{2}(a-b)$$
 を因数分解せよ。

6

解

この式は a, b, c のどの文字についても 2 次式であるから,たとえば,a について整理する。 $a^2(b-c)+b^2(c-a)+c^2(a-b)$

=

問 28 $a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)+2abc$ を因数分解せよ。

- (教科書 p.19)
- **1** $A = 3x^2 4x + 1$, $B = -4x^2 + 3$, $C = 2x^2 + 5x 7$ とするとき, 3(A 2B) + 4(B C) を計算せよ。
- (4) (x-1)(x-2)(x+3)(x+6)

- **2** 2つの整式の和が $6x^3 + 2x^2 3x 4$, 差が $2x^3 6x^2 + 3x + 12$ であるとき, この2つの整式を求めよ。
- 4 次の式を因数分解せよ。
 - (1) $4x^3 18x^2 10x$
 - (2) $8a^2 2ab 3b^2$

- 3 次の式を展開せよ。
 - (1) $(3x-1)(x^2+7x-5)$

(3) $(x-3)^2 + 3 - x$

(2) $(x^2 - x + 1)^2$

(4) $(x-y)^2 - (2x-y)^2$

(5)
$$4ab^2 - a + 2b - 1$$

(6)
$$x^2 - (a-1)x - a$$

(7)
$$6x^2 + 7xy + 2y^2 - x - y - 1$$

(8)
$$a^3 - ab^2 + b^2c - a^2c$$

参 考

複2次式の因数分解

----問2 次の式を因数分解せよ。

(1) $x^4 + x^2 + 1$

(教科書 p.20)

xについての整式が

$$ax^4 + bx^2 + c$$

....(1)

の形に表されるとき,①を(1

)という。

例 1 複 2 次式 $x^4 + x^2 - 2$ を因数分解してみよう。

$$x^2 = X$$
 とおくと

$$x^{2} = X \subset \partial S \setminus C$$
$$x^{4} + x^{2} - 2 =$$

(2)
$$9x^4 - 7x^2 + 1$$

----問1 次の式を因数分解せよ。

$$(1) \quad x^4 - 13x^2 + 36$$

(2)
$$8x^4 + 10x^2 - 3$$

例 2 (1)
$$x^4 + 3x^2 + 4 =$$

$$(2) \quad 4x^4 - 8x^2 + 1 =$$

発 展

3次式の乗法公式と因数分解

(教科書 p.21)

- 3次式の乗法公式
- 1 $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$
- 問1 上の公式 1, 2 が成り立つことを確かめよ。

1

2

- 例 1 (1) $(x+2)^3 =$
 - (2) $(3x 2y)^3 =$
- 問2 次の式を展開せよ。
 - $(1) (x+1)^3$
 - (2) $(2x y)^3$

- 3 次式の因数分解の公式
- 3 $a^3 + b^3 = (a+b)(a^2 ab + b^2)$
- 4 $a^3 b^3 = (a b)(a^2 + ab + b^2)$
- 問3 上の公式 3, 4 が成り立つことを、右辺を展開することにより確かめよ。 3

4

- 例 2 (1) $x^3 + 8 =$
 - $(2) \quad 27x^3 8y^3 =$
- ____ 問4 次の式を因数分解せよ。
 - (1) $x^3 + 125$
 - (2) $64x^3 27y^3$

1 節 式の計算

定数項

1 整式

単項式と多項式 (教科書 p.6) 数、文字およびそれらの積として表される式を(1) 単項式)という。 単項式において、掛け合わされている文字の個数をその単項式の(² 次数)といい、数の 部分を単項式の(3 係数)という。 例 $\mathbf{1}$ (1) 2a の次数は ($\mathbf{1}$), 係数は ($\mathbf{2}$) (2) $-x^2y$ の次数は (3), 係数は (-1) (3) 定数 3 は文字を含まないから、次数は(0)、係数は(3) 問1 次の単項式の次数と係数を答えよ。 (1) $5a^4$ (2) xv^3 (2) -7次数は4. 次数は4. 次数は0. 係数は5 係数は1 係数は-7 例 $2 -3x^2yz$ は、文字 x に着目すると、 次数は $\left(\begin{array}{cccc} 2 \\ \end{array}\right)$, 係数は $\left(\begin{array}{cccc} -3yz \\ \end{array}\right)$ 文字xとyに着目すると、次数は(3)、係数は(-3z間2 〔 〕内の文字に着目したとき、次の単項式の次数と係数を答えよ。 (1) $4x^2y^3$ [y] (2) $-2a^2bc^4$ $[b \succeq c]$ 次数は3, 次数は5, 係数は 4x² 係数は -2a2 多項式): 単項式の和として表される式。 項): 多項式の1つ1つの単項式。 整式): 単項式と多項式をあわせたもの。 整式の整理 (教科書 p.7)): $2x^2y + 4xy + 3x^2y$ における $2x^2y$, $3x^2y$ のように, 文字の部分が同じ項の (7 同類項 こと。 同類項を1つにまとめて式を簡単にすることを、整式を(8 整理する) という。 問3 整式 $3x^2y + 4xy - 7x^2y + 5xy - 4$ を整理せよ。 $3x^2y + 4xy - 7x^2y + 5xy - 4$ $= (3-7)x^2y + (4+5)xy - 4$ $=-4x^2y+9xy-4$): 整理された整式で、各項の次数のうち最も高いもの。 (10 n 次式):次数が*n*の整式。

): 整式の項の中で、文字を含まない項。

例 $3 4x^2 + xy^2 - 2x + y + 5$ は、(3) 次式で、定数項は (5) である。 例 $4x^2 + xy^2 - 2x + y + 5$ を x について整理すると $4x^2 + (y^2 - 2)x + (y + 5)$ となり、x については (2) 次式で、定数項は (y+5) である。 間4 次の整式は何次式で、定数項は何か。また、x については何次式で、その場合の定数項は何か。 (1) $5x^3 - 3x^2y^3 + y^4 - 8$ 最も次数の高い項が $-3x^2y^3$ であるから、5次式で、定数項は-8である。 また、x について整理すると $5x^3 - 3y^3x^2 + (y^4 - 8)$ よって、x については3次式で、定数項は $y^4 - 8$ である。 (2) $x^3 + x^2y - y^2 + 7x - 4y + 1$ 最も次数の高い項は x^3 と x^2y であるから、3次式で、定数項は1である。 また、x について整理すると $x^3 + vx^2 + 7x + (-v^2 - 4v + 1)$ よって、x については 3 次式で、定数項は $-y^2 - 4y + 1$ である。): ある1つの文字に着目して整式を整理するとき、次数の高い項から順 に並べること。 (13 昇べきの順):次数の低い項から順に並べること。 例 5 $x^2 + y^2 - 4xy + 5x + 3y + 2 を x について降べきの順に整理すると$ $x^{2} + (-4y + 5)x + (y^{2} + 3y + 2)$

問5 次の整式をxについて降べきの順に整理せよ。

(1)
$$5x^2 - 2 + 7x^3 - 3x$$

= $7x^3 + 5x^2 - 3x - 2$

(2)
$$2x^2 + 5xy + y^2 - x + 5y - 4$$

= $2x^2 + (5y - 1)x + (y^2 + 5y - 4)$

2 整式の加法・減法・乗法

整式の加法・減法

例 6 整式
$$A = 4x^2 - 3x + 10$$
, $B = -2x^2 + 6$ のとき
$$A + B = (4x^2 - 3x + 10) + (-2x^2 + 6)$$

$$= 4x^2 - 3x + 10 - 2x^2 + 6$$

$$= (4 - 2)x^2 - 3x + 10 + 6$$

$$= 2x^2 - 3x + 16$$

$$A - B = (4x^2 - 3x + 10) - (-2x^2 + 6)$$

$$= 4x^2 - 3x + 10 + 2x^2 - 6$$

$$= (4 + 2)x^2 - 3x + 10 - 6$$

I p 類項をまとめる

問6 次の整式 A, B について, A+B, A-B を求めよ。

 $=6x^2-3x+4$

(1)
$$A = x^3 - 4x^2 - 3$$
, $B = 3x^3 - 5x^2 - x + 3$
 $A + B$
 $= (x^3 - 4x^2 - 3) + (3x^3 - 5x^2 - x + 3)$
 $= x^3 - 4x^2 - 3 + 3x^3 - 5x^2 - x + 3$
 $= (1+3)x^3 + (-4-5)x^2 - x - 3 + 3$
 $= 4x^3 - 9x^2 - x$
 $A - B$
 $= (x^3 - 4x^2 - 3) - (3x^3 - 5x^2 - x + 3)$
 $= x^3 - 4x^2 - 3 - 3x^3 + 5x^2 + x - 3$
 $= (1-3)x^3 + (-4+5)x^2 + x - 3 - 3$
 $= -2x^3 + x^2 + x - 6$

(2)
$$A = 2x^2 + y^2$$
, $B = -x^2 - 3xy + y^2$
 $A + B$
 $= (2x^2 + y^2) + (-x^2 - 3xy + y^2)$
 $= 2x^2 + y^2 - x^2 - 3xy + y^2$
 $= (2 - 1)x^2 - 3xy + (1 + 1)y^2$
 $= x^2 - 3xy + 2y^2$
 $A - B$
 $= (2x^2 + y^2) - (-x^2 - 3xy + y^2)$
 $= 2x^2 + y^2 + x^2 + 3xy - y^2$
 $= (2 + 1)x^2 + 3xy + (1 - 1)y^2$
 $= 3x^2 + 3xy$

例 7
$$A = x^2 + x - 3$$
, $B = 2x^2 - x - 4$ のとき $3A - 2B = 3(x^2 + x - 3) - 2(2x^2 - x - 4)$ $= 3x^2 + 3x - 9 - 4x^2 + 2x + 8$ $= (3 - 4)x^2 + (3 + 2)x - 9 + 8$ $= -x^2 + 5x - 1$

問7
$$A = 3x^2 + 2x + 1$$
, $B = -x^2 + 3x - 5$ のとき、次の式を計算せよ。
(1) $A + 3B$

$$= (3x^2 + 2x + 1) + 3(-x^2 + 3x - 5)$$

$$= 3x^2 + 2x + 1 - 3x^2 + 9x - 15$$

$$= (3 - 3)x^2 + (2 + 9)x + 1 - 15$$

$$= 11x - 14$$

(2)
$$2A - B$$

= $2(3x^2 + 2x + 1) - (-x^2 + 3x - 5)$
= $6x^2 + 4x + 2 + x^2 - 3x + 5$
= $(6+1)x^2 + (4-3)x + 2 + 5$
= $7x^2 + x + 7$

(3)
$$5(A - B) - 3A$$

 $= 5A - 5B - 3A$
 $= 2A - 5B$
 $= 2(3x^2 + 2x + 1) - 5(-x^2 + 3x - 5)$
 $= 6x^2 + 4x + 2 + 5x^2 - 15x + 25$
 $= (6 + 5)x^2 + (4 - 15)x + 2 + 25$
 $= 11x^2 - 11x + 27$

指数法則 (教科書p.9)

a をいくつか掛けたものをa の(1 累乗)という。a をn 個掛けたものをa の(2 n 乗)といい, a^n と表す。このとき,n を a^n の(3 指数)という。

とくに, $a^1 = a$ である。

一般に次の(4 指数法則)が成り立つ。

指数法則

m, n が正の整数のとき

$$a^m a^n = a^{m+n},$$

$$(a^m)^n = a^{mn}$$
,

$$(ab)^n = a^n b^n$$

例 $\mathbf{8}$ $a^3 \times a^5 = a^{3+5} = a^8$,

$$(a^4)^3 = a^{4\times 3} = a^{12}$$

$$(a^2b)^4 = (a^2)^4b^4 = a^{2\times 4}b^4 = a^8b^4$$

問8 次の計算をせよ。

 $(1) \quad a^6 \times a^2$

 $(2) (ab^3)^3$

$$=a^{6+2}=a^8$$

$$=a^3(b^3)^3=a^3b^{3\times 3}=a^3b^9$$

 $(3) \quad (x^3)^5 \times x^2$

(4)
$$x^3 \times (x^2y^3)^4 \times y^2$$

$$= x^{(3 \times 5 + 2)} = x^{17}$$

$$= x^{(3+2\times4)} \times y^{(3\times4+2)} = x^{11}y^{14}$$

単項式の積は、係数、文字の部分の積をそれぞれ計算すればよい。

例
$$9$$
 $3x^2y^4 \times (-2x^4y)^3 = 3x^2y^4 \times (-2)^3(x^4)^3y^3$
= $3 \times (-2)^3 \times x^2x^{12}y^4y^3 = -24x^{14}y^7$

問9 次の計算をせよ。

(1) $2a^3 \times \frac{1}{4}a^4$

$$= 2 \times \frac{1}{4} \times a^3 a^4 = \frac{1}{2} a^7$$

(2) $4a^2b^4 \times (-a^6b)$

$$= 4 \times (-1) \times a^2 a^6 b^4 b = -4a^8 b^5$$

- (3) $(-3x^2)^4 \times (x^3)^2$
 - $= (-3)^4 (x^2)^4 \times x^6$
 - $= (-3)^4 \times x^8 x^6 = 81x^{14}$
- (4) $64x^3y \times \left(\frac{1}{2}xy^2\right)^5$
 - $=64x^3y \times \left(\frac{1}{2}\right)^5 x^5 (y^2)^5$
 - $= 64 \times \left(\frac{1}{2}\right)^5 \times x^3 x^5 y y^{10} = 2x^8 y^{11}$

式の展開

(教科書 p.10)

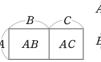
-C-

AC

整式の積を計算するには、次の分配法則を用いる。

$$A(B+C) = AB + AC$$

$$(A+B)C = AC + AC$$



5 展開): 整式の積を単項式の和の形に表すこと。

例 10
$$7x(x^2 + 3xy - 2y^2) = 7x \cdot x^2 + 7x \cdot 3xy + 7x \cdot (-2y^2)$$

= $7x^3 + 21x^2y - 14xy^2$

<u>間 10</u> 次の式を展開せよ。

(1)
$$3x(2x-7)$$

$$=3x\cdot 2x+3x\cdot (-7)$$

$$=6x^2-21x$$

(2)
$$(3x^2 - 2x + 1) \times 5x^3$$

$$= 3x^2 \cdot 5x^3 - 2x \cdot 5x^3 + 1 \cdot 5x^3$$

$$=15x^5-10x^4+5x^3$$

(3)
$$-4xy(2x^2 - xy + y^2)$$

$$= -4xy \cdot 2x^2 - 4xy \cdot (-xy) - 4xy \cdot y^2$$

$$= -8x^3y + 4x^2y^2 - 4xy^3$$

例 11
$$(4x+5)(x^2+3x-2) = 4x(x^2+3x-2) + 5(x^2+3x-2)$$

= $4x^3 + 12x^2 - 8x + 5x^2 + 15x - 10$
= $4x^3 + (12+5)x^2 + (-8+15)x - 10$
= $4x^3 + 17x^2 + 7x - 10$

問11 次の式を展開せよ。

(1)
$$(x+6)(2x+3)$$

= $x(2x+3) + 6(2x+3)$
= $2x^2 + 3x + 12x + 18$
= $2x^2 + 15x + 18$

(2)
$$(5x-4)(3x+7)$$

= $5x(3x+7) - 4(3x+7)$
= $15x^2 + 35x - 12x - 28$
= $15x^2 + 23x - 28$

(3)
$$(x+4)(2x^2-8x+5)$$

= $x(2x^2-8x+5)+4(2x^2-8x+5)$
= $2x^3-8x^2+5x+8x^2-32x+20$
= $2x^3-27x+20$

$$(4) \quad (2x-7)(4x^2-2x+3)$$

$$= 2x(4x^2-2x+3) - 7(4x^2-2x+3)$$

$$= 8x^3 - 4x^2 + 6x - 28x^2 + 14x - 21$$

$$= 8x^3 - 32x^2 + 20x - 21$$

乗法公式 (教科書p.11)

$$\boxed{1} \quad (a+b)^2 = a^2 + 2ab + b^2$$

$$3 (a+b)(a-b) = a^2 - b^2$$

4
$$(x+a)(x+b) = x^2 + (a+b)x + ab$$

例 12 (1)
$$(2x+3y)^2 = (2x)^2 + 2 \cdot 2x \cdot 3y + (3y)^2 = 4x^2 + 12xy + 9y^2$$

(2)
$$(5x - y)^2 = (5x)^2 - 2 \cdot 5x \cdot y + y^2 = 25x^2 - 10xy + y^2$$

(3)
$$(4x + 7y)(4x - 7y) = (4x)^2 - (7y)^2 = 16x^2 - 49y^2$$

(4)
$$(x+3)(x+6) = x^2 + (3+6)x + 3 \cdot 6 = x^2 + 9x + 18$$

間 12 次の式を展開せよ。

(1)
$$(3x + y)^2$$

= $(3x)^2 + 2 \cdot 3x \cdot y + y^2$
= $9x^2 + 6xy + y^2$

(2)
$$(8x - 3y)^2$$

= $(8x)^2 - 2 \cdot 8x \cdot 3y + (3y)^2$
= $64x^2 - 48xy + 9y^2$

(3)
$$(6x + 5y)(6x - 5y)$$

= $(6x)^2 - (5y)^2$
= $36x^2 - 25y^2$

(4)
$$(x+2)(x-7)$$

= $x^2 + (2-7)x + 2 \cdot (-7)$
= $x^2 - 5x - 14$

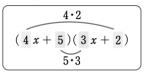
4

$$x$$
 についての 1 次式の積は次のようになる。

$$(ax + b)(cx + d) = ax(cx + d) + b(cx + d)$$
$$= acx^{2} + adx + bcx + bd$$
$$= acx^{2} + (ad + bc)x + bd$$

4	cx	
ax	acx^2	adx
_ b	bcx	bd

$$\boxed{5}$$
 $(ax + b)(cx + d) = acx^2 + (ad + bc)x + bd$



<u>間 13</u> 次の式を展開せよ。

(1)
$$(2x+1)(5x+2)$$

= $2 \cdot 5x^2 + (2 \cdot 2 + 1 \cdot 5)x + 1 \cdot 2$
= $10x^2 + 9x + 2$

(2)
$$(3x-4)(2x+5)$$

= $3 \cdot 2x^2 + (3 \cdot 5 - 4 \cdot 2)x - 4 \cdot 5$
= $6x^2 + 7x - 20$

----問 14 次の式を展開せよ。

(1)
$$(x-3y)(4x-y)$$

= $1 \cdot 4x^2 + \{1 \cdot (-1) - 3 \cdot 4\}xy - 3 \cdot (-1)y^2$
= $4x^2 - 13xy + 3y^2$

(2)
$$(4x + y)(3x - 2y)$$

= $4 \cdot 3x^2 + \{4 \cdot (-2) + 1 \cdot 3\}xy + 1 \cdot (-2)y^2$
= $12x^2 - 5xy - 2y^2$

展開の工夫

(教科書 p.12)

 $\blacktriangleleft (A+b)(A-b)$

 $\blacktriangleleft A^2 - b^2$

例 15
$$(a+b+c)(a-b+c)$$

$$= \{(a+c)+b\}\{(a+c)-b\}$$

$$= (a+c)^2-b^2$$

$$= a^2 + 2ac + c^2 - b^2$$

----問 15 次の式を展開せよ。

(1)
$$(a+b)(a+b-5)$$

= $(a+b)\{(a+b)-5\}$
= $(a+b)^2 - 5(a+b)$
= $a^2 + 2ab + b^2 - 5a - 5b$

(2)
$$(a-b+3)(a-b-7)$$

= $\{(a-b)+3\}\{(a-b)-7\}$
= $(a-b)^2-4(a-b)-21$
= $a^2-2ab+b^2-4a+4b-21$

(3)
$$(x-y-z)(x+y-z)$$

= $\{(x-z)-y\}\{(x-z)+y\}$
= $(x-z)^2-y^2$
= $x^2-2xz+z^2-y^2$

(4)
$$(x+y-z)(x-y+z)$$

= $\{x + (y-z)\}\{x - (y-z)\}$
= $x^2 - (y-z)^2$
= $x^2 - (y^2 - 2yz + z^2)$
= $x^2 - y^2 + 2yz - z^2$

例題 次の等式が成り立つことを示せ。

$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$$

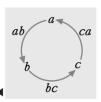
$$(a+b+c)^{2}$$

$$= \{(a+b)+c\}^{2}$$

$$= (a+b)^{2} + 2(a+b)c + c^{2}$$

$$= a^{2} + 2ab + b^{2} + 2ac + 2bc + c^{2}$$

$$= a^{2} + b^{2} + c^{2} + 2ab + 2bc + 2ca$$



<u>間 16</u> 次の式を展開せよ。

(1)
$$(a+b-c)^2$$

= $a^2 + b^2 + (-c)^2 + 2ab + 2b(-c) + 2(-c)a$
= $a^2 + b^2 + c^2 + 2ab - 2bc - 2ca$

(2)
$$(a-b-c)^2$$

= $a^2 + (-b)^2 + (-c)^2 + 2a(-b) + 2(-b)(-c) + 2(-c)a$
= $a^2 + b^2 + c^2 - 2ab + 2bc - 2ca$

(3)
$$(x-2y+3z)^2$$

= $x^2 + (-2y)^2 + (3z)^2 + 2 \cdot x \cdot (-2y) + 2 \cdot (-2y) \cdot 3z + 2 \cdot 3z \cdot x$
= $x^2 + 4y^2 + 9z^2 - 4xy - 12yz + 6zx$

例題 次の式を展開せよ。

2 (1)
$$(x+2)(x+3)(x-2)(x-3)$$

(2)
$$(a+b)^2(a-b)^2$$

(2)
$$(a+b)^2(a-b)^2$$

= $\{(a+b)(a-b)\}^2$
= $(a^2-b^2)^2$
= $a^4 - 2a2b^2 + b^4$

----問 17 次の式を展開せよ。

(1)
$$(x+2)(x+5)(x-2)(x-5)$$

= $\{(x+2)(x-2)\}\{(x+5)(x-5)\}$
= $(x^2-4)(x^2-25)$
= x^4-29x^2+100

(2)
$$(x+1)(x+2)(x+3)(x+4)$$

= $\{(x+1)(x+4)\}\{(x+2)(x+3)\}$
= $(x^2+5x+4)(x^2+5x+6)$
= $\{(x^2+5x)+4\}\{(x^2+5x)+6\}$
= $(x^2+5x)^2+10(x^2+5x)+24$
= $x^4+10x^3+25x^2+10x^2+50x+24$
= $x^4+10x^3+35x^2+50x+24$

(3)
$$(a+2b)^2(a-2b)^2$$

= $\{(a+2b)(a-2b)\}^2$
= $(a^2-4b^2)^2$
= $a^4-8a^2b^2+16b^4$

$$(4) \quad (2x - 3y)^2 (2x + 3y)^2$$

$$= \{(2x - 3y)(2x + 3y)\}^2$$

$$= (4x^2 - 9y^2)^2$$

$$= 16x^4 - 72x^2y^2 + 81y^4$$

問 18
$$(a^2 + 1)(a + 1)(a - 1)$$
 を展開せよ。
 $(a^2 + 1)(a + 1)(a - 1)$
 $= (a^2 + 1)(a^2 - 1)$
 $= (a^2)^2 - 1$
 $= a^4 - 1$

3 因数分解

):整式を1次以上のいくつかの整式の積の形

に表すこと。

(x+a)(x+b)展開↓↑因数分解 $x^2 + (a+b)x + ab$

(2 因数):積をつくる各整式。

共通因数をくくり出すこと

(教科書 p.14)

整式の各項に共通な因数があるとき、それをかっこの外にくくり出して、整式を因数分解するこ とができる。 ma + mb = m(a + b)

例 16 (1) $6a^2b + 8ab^2 = 2ab \cdot 3a + 2ab \cdot 4b$ =2ab(3a+4b)

(2)
$$2xy^2 - y^2 = 2x \cdot y^2 - 1 \cdot y^2$$

= $(2x - 1)y^2$

問 19 次の式を因数分解せよ。

- (1) $9a^2b 6ac$
 - $= 3a \cdot 3ab 3a \cdot 2c$
 - = 3a(3ab 2c)

(2) $3x^2yz + yz$

- $=3x^2 \cdot yz + 1 \cdot yz$
- $=(3x^2+1)yz$

(3) $3a^3b^2 - 6a^2b^3 + 12a^2b^2c$

- $=3a^2b^2 \cdot a 3a^2b^2 \cdot 2b + 3a^2b^2 \cdot 4c$
- $=3a^2b^2(a-2b+4c)$

例 $\overline{17}(1)$ a(a+3)-2b(a+3)=(a+3)(a-2b)

(2)
$$a(x-y) + b(y-x) = a(x-y) - b(x-y)$$
 $\sqrt{y-x} = -(x-y)$
= $(a-b)(x-y)$

-----問 20 次の式を因数分解せよ。

(1)
$$(x + 5y)y - (x + 5y)z$$

= $(x + 5y)(y - z)$

$$(2) \quad 4x(y-2) + y - 2$$
$$= 4x(y-2) + (y-2)$$

$$=(4x+1)(y-2)$$

(3)
$$(3a-b)x-3a+b$$

= $(3a-b)x-(3a-b)$
= $(3a-b)(x-1)$

$$(4) \quad a(b-c) - 2c + 2b$$

$$= a(b-c) + (2b-2c)$$

$$= a(b-c) + 2(b-c)$$

$$= (a+2)(b-c)$$

2次式の因数分解

 $\begin{vmatrix} 1 \end{vmatrix} a^2 + 2ab + b^2 = (a+b)^2$

$$2 \quad a^2 - 2ab + b^2 = (a - b)^2$$

$$\boxed{3} \quad a^2 - b^2 = (a+b)(a-b)$$

$$4$$
 $x^2 + (a+b)x + ab = (x+a)(x+b)$

例 18 (1)
$$x^2 + 6xy + 9y^2 = x^2 + 2 \cdot x \cdot 3y + (3y)^2$$

$$= (x + 3y)^2$$

(2)
$$9x^2 - 24xy + 16y^2 = (3x)^2 - 2 \cdot 3x \cdot 4y + (4y)^2$$

= $(3x - 4y)^2$

(3)
$$36x^2 - 25y^2 = (6x)^2 - (5y)^2$$

= $(6x + 5y)(6x - 5y)$

(4)
$$x^2 - 9x - 22 = x^2 + \{2 + (-11)\}x + 2 \cdot (-11)$$

= $(x + 2)(x - 11)$

(教科書 p.15)

問 21 次の式を因数分解せよ。

(1)
$$16x^2 + 8x + 1$$

= $(4x)^2 + 2 \cdot 4x \cdot 1 + 1^2$
= $(4x + 1)^2$

(2)
$$4x^2 - 28xy + 49y^2$$

= $(2x)^2 - 2 \cdot 2x \cdot 7y + (7y)^2$
= $(2x - 7y)^2$

(3)
$$64x^2 - 81y^2$$

= $(8x)^2 - (9y)^2$
= $(8x + 9y)(8x - 9y)$

(4)
$$x^2 + 13x - 30$$

= $x^2 + \{(-2) + 15\}x + (-2) \cdot 15$
= $(x - 2)(x + 15)$

例 19
$$9x^3y - 16xy^3 = xy(9x^2 - 16y^2)$$

= $xy\{(3x)^2 - (4y)^2\}$
= $xy(3x + 4y)(3x - 4y)$

問22 次の式を因数分解せよ。

(1)
$$25x^4 - 4x^2y^2$$

 $= x^2(25x^2 - 4y^2)$
 $= x^2\{(5x)^2 - (2y)^2\}$
 $= x^2(5x + 2y)(5x - 2y)$

(2)
$$ax^2 + 12ax + 36a$$

= $a(x^2 + 12x + 36)$
= $a(x + 6)^2$

(3)
$$x^3 - 2x^2 - 48x$$

= $x(x^2 - 2x - 48)$
= $x(x+6)(x-8)$

(4)
$$(a-b)x^2 + (b-a)y^2$$

 $= (a-b)x^2 - (a-b)y^2$
 $= (a-b)(x^2 - y^2)$
 $= (a-b)(x+y)(x-y)$

$$\boxed{5}$$
 $acx^2 + (ad + bc)x + bd = (ax + b)(cx + d)$

例 20 $3x^2 + 2x - 5$ を因数分解してみよう。

この式と公式5の左辺を比べて,

$$ac = 3$$
, $ad + bc = 2$, $bd = -5$ を満たす a , b , c , d の組を見つければよい。 まず, $ac = 3$ を満たす整数 a , c の組は, $a > 0$, $c > 0$ とすると

$$\begin{cases} a = 1 \\ c = 3 \end{cases} \begin{cases} a = 3 \\ c = 1 \end{cases}$$

また, bd = -5 を満たす整数 b, d の組は

$$\begin{cases} b = 1 \\ d = -5 \end{cases} \begin{cases} b = 5 \\ d = -1 \end{cases} \begin{cases} b = -1 \\ d = 5 \end{cases} \begin{cases} b = -5 \\ d = 1 \end{cases}$$

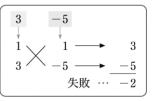
がある。

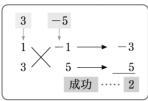
これらの組について、右のような形式の計算に よって、ad+bc=2を満たすa, b, c, d の組を 見つける。

よって、(
$$a=1, b=-1, c=3, d=5$$
) とすればよい。

ゆえに (
$$3x^2 + 2x - 5 = (x - 1)(3x + 5)$$
)

 $\begin{array}{ccc}
ac & bd \\
\downarrow & \downarrow & bc \\
c & d & \xrightarrow{ad} ad \\
\hline
ad + bc & & \\
\end{array}$





(たすき掛け): このような因数分解の方法のこと。

8

問 23 次の式を因数分解せよ。

(1)
$$2x^2 + 3x + 1$$

= $(x + 1)(2x + 1)$
 $1 \longrightarrow 2$
 $2 \longrightarrow \frac{1}{3}$

(2)
$$3x^2 - 5x - 2$$

= $(x - 2)(3x + 1)$
 $1 \longrightarrow 1$
 $1 \longrightarrow 1$
 $1 \longrightarrow 1$

(3)
$$5x^2 + 7x - 6$$

= $(x+2)(5x-3)$
 $\xrightarrow{1}$ $\xrightarrow{2}$ $\xrightarrow{10}$ $\xrightarrow{-3}$ $\xrightarrow{7}$

(4)
$$8x^{2} + 6x - 5$$

= $(2x - 1)(4x + 5)$
 $\xrightarrow{2} \xrightarrow{-1 \longrightarrow -4} \xrightarrow{5 \longrightarrow 10} \xrightarrow{10}$

(5)
$$6x^2 - 5x - 6$$

= $(2x - 3)(3x + 2)$
 $\xrightarrow{2} \xrightarrow{-3} \xrightarrow{-9} \xrightarrow{4} \xrightarrow{-5}$

(6)
$$4x^2 - 16x + 15$$

= $(2x - 3)(2x - 5)$
 $2 \longrightarrow -6$
 $2 \longrightarrow -10$
 -16

例
$$21$$
 $8x^2 - 26xy + 15y^2$ を因数分解してみよう。
この式を、 x についての 2 次式と考えると
 x の係数は ($-26y$)
定数項は ($15y^2$)
である。
したがって、右の計算より
($8x^2 - 26xy + 15y^2 = (4x - 3y)(2x - 5y)$)

----問 24 次の式を因数分解せよ。

$$(1) \quad 7x^2 + 11xy + 4y^2$$

$$= (x+y)(7x+4y)$$

$$\begin{array}{c} 1 \\ y \longrightarrow 7y \\ 7 \end{array}$$

$$\begin{array}{c} 4y \\ 11y \end{array}$$

$$(2) \quad 12x^2 - xy - 6y^2$$

$$= (3x + 2y)(4x - 3y)$$

$$\stackrel{3}{\cancel{\qquad}} \stackrel{2y \longrightarrow 8y}{\cancel{\qquad}} \stackrel{8y}{\cancel{\qquad}} \stackrel{-9y}{\cancel{\qquad}}$$

因数分解の工夫

(教科書 p.17)

式の一部をひとまとめにして、1つの文字のようにみなすことにより、公式を利用して因数分解 できることがある。

例題 次の式を因数分解せよ。

(1)
$$(a+b)^2-c^2$$

(2)
$$(x-2y)(x-2y+5)+6$$

(1)
$$(a+b)^2 - c^2 = \{(a+b) + c\}\{(a+b) - c\}$$

= $(a+b+c)(a+b-c)$

(2)
$$(x-2y)(x-2y+5)+6 = (x-2y)\{(x-2y)+5\}+6$$

= $(x-2y)^2+5(x-2y)+6$
= $\{(x-2y)+2\}\{(x-2y)+3\}$
= $(x-2y+2)(x-2y+3)$

間25次の式を因数分解せよ。

(1)
$$(a+4b)^2 - b^2$$

= $\{(a+4b) + b\}\{(a+4b) - b\}$
= $(a+5b)(a+3b)$

(2)
$$9x^2 - (y - z)^2$$

 $= (3x)^2 - (y - z)^2$
 $= \{3x + (y - z)\}\{3x - (y - z)\}$
 $= (3x + y - z)(3x - y + z)$

(3)
$$(x-y)^2 + 4(x-y) - 45$$

= $\{(x-y) - 5\}\{(x-y) + 9\}$
= $(x-y-5)(x-y+9)$

(4)
$$(2a + b)(2a + b - 9) + 20$$

= $(2a + b)\{(2a + b) - 9\} + 20$
= $(2a + b)^2 - 9(2a + b) + 20$
= $\{(2a + b) - 4\}\{(2a + b) - 5\}$
= $(2a + b - 4)(2a + b - 5)$

$$a^3 - ab^2 - b^2c + a^2c$$
 を因数分解せよ。

4

この式はaについて3次式,bについて2次式,cについて1次式であるから,最も次数の低

$$a^{3} - ab^{2} - b^{2}c + a^{2}c = (a^{2} - b^{2})c + (a^{3} - ab^{2})$$

$$= (a^{2} - b^{2})c + a(a^{2} - b^{2})$$

$$= (a^{2} - b^{2})(a + c)$$

$$= (a + b)(a - b)(a + c)$$

問 26 次の式を因数分解せよ。

(1)
$$4xy^2 - 4y^2 - x + 1$$

= $(4y^2 - 1)x - (4y^2 - 1)$
= $(4y^2 - 1)(x - 1)$
= $(2y + 1)(2y - 1)(x - 1)$

(2)
$$a^3 - 9ab^2 + a^2c - 9b^2c$$

 $= (a^2 - 9b^2)c + (a^3 - 9ab^2)$
 $= (a^2 - 9b^2)c + a(a^2 - 9b^2)$
 $= (a^2 - 9b^2)(a + c)$
 $= (a + 3b)(a - 3b)(a + c)$

$$2x^2 + 5xy + 2y^2 - 5x - y - 3$$
 を因数分解せよ。

5

この式は x, y のどちらの文字についても 2 次式であるから, たとえば, x について整理する。

$$2x^{2} + 5xy + 2y^{2} - 5x - y - 3$$

$$= 2x^{2} + (5y - 5)x + (2y^{2} - y - 3)$$

$$= 2x^{2} + (5y - 5)x + (2y - 3)(y + 1)$$

$$= \{2x + (y + 1)\}\{x + (2y - 3)\}$$

$$= (2x + y + 1)(x + 2y - 3)$$

間 27 次の式を因数分解せよ。

(1)
$$x^2 + 3xy + 2y^2 + 5x + 7y + 6$$

 $= x^2 + (3y + 5)x + (2y^2 + 7y + 6)$
 $= x^2 + (3y + 5)x + (y + 2)(2y + 3)$
 $= \{x + (y + 2)\}\{x + (2y + 3)\}$
 $= (x + y + 2)(x + 2y + 3)$
 $\xrightarrow{1} y + 2 \longrightarrow y + 2$
 $\xrightarrow{1} 2y + 3 \longrightarrow 2y + 3$
 $\xrightarrow{2y + 5}$

(2)
$$2x^{2} - 3xy - 2y^{2} + x + 3y - 1$$

$$= 2x^{2} + (-3y + 1)x - (2y^{2} - 3y + 1)$$

$$= 2x^{2} + (-3y + 1)x - (y - 1)(2y - 1)$$

$$= \{x - (2y - 1)\}\{2x + (y - 1)\}$$

$$= (x - 2y + 1)(2x + y - 1)$$

$$1 \longrightarrow (2y - 1) \longrightarrow -4y + 2$$

$$y - 1 \longrightarrow y - 1$$

$$-3y + 1$$

$$a^{2}(b-c)+b^{2}(c-a)+c^{2}(a-b)$$
 を因数分解せよ。

6

この式は a, b, c のどの文字についても 2 次式であるから, たとえば, a について整理する。

$$a^{2}(b-c) + b^{2}(c-a) + c^{2}(a-b)$$

$$= (b-c)a^{2} - (b^{2} - c^{2})a + (b^{2}c - bc^{2})$$

$$= (b-c)a^{2} - (b-c)(b+c)a + bc(b-c)$$

$$= (b-c)\{a^{2} - (b+c)a + bc\}$$

$$= (b-c)(a-b)(a-c)$$

= -(a-b)(b-c)(c-a)

問 28
$$a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)+2abc$$
 を因数分解せよ。
 $a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2)+2abc$
 $=(b+c)a^2+(b^2+2bc+c^2)a+(b^2c+bc^2)$
 $=(b+c)a^2+(b+c)^2a+bc(b+c)$
 $=(b+c)\{a^2+(b+c)a+bc\}$
 $=(b+c)(a+b)(a+c)$
 $=(a+b)(b+c)(c+a)$

問題

(教科書 p.19)

1 $A = 3x^2 - 4x + 1$, $B = -4x^2 + 3$, $C = 2x^2 + 5x - 7$ とするとき, 3(A - 2B) + 4(B - C) を計算せよ。

$$3(A-2B)+4(B-C)$$

$$= 3A - 6B + 4B - 4C$$

$$= 3A - 2B - 4C$$

$$= 3(3x^2 - 4x + 1) - 2(-4x^2 + 3) - 4(2x^2 + 5x - 7)$$

$$= 9x^2 - 12x + 3 + 8x^2 - 6 - 8x^2 - 20x + 28$$

$$= (9+8-8)x^2 + (-12-20)x + 3 - 6 + 28$$

- $=9x^2-32x+25$
- **2** 2つの整式の和が $6x^3 + 2x^2 3x 4$, 差が $2x^3 6x^2 + 3x + 12$ であるとき, この2つの整式を求めよ。
 - 2つの整式をA, Bとおくと

$$A + B = 6x^3 + 2x^2 - 3x - 4$$

$$A - B = 2x^3 - 6x^2 + 3x + 12$$
2

$$(1)+(2) \downarrow 0$$
 $2A = 8x^3 - 4x^2 + 8$

$$(1)-(2)$$
 \downarrow (1) $2B = 4x^3 + 8x^2 - 6x - 16$

$$1 > 7$$
 $A = 4x^3 - 2x^2 + 4$

$$B = 2x^3 + 4x^2 - 3x - 8$$

すなわち,2つの整式は

$$4x^3 - 2x^2 + 4$$
, $2x^3 + 4x^2 - 3x - 8$

3 次の式を展開せよ。

(1)
$$(3x-1)(x^2+7x-5)$$

$$=3x(x^2+7x-5)-(x^2+7x-5)$$

$$=3x^3+21x^2-15x-x^2-7x+5$$

$$=3x^3+(21-1)x^2+(-15-7)x+5$$

- $=3x^3+20x^2-22x+5$
- (2) $(x^2 x + 1)^2$

$$= (x^2)^2 + (-x)^2 + 1^2 + 2 \cdot x^2 \cdot (-x) + 2 \cdot (-x) \cdot 1 + 2 \cdot 1 \cdot x^2$$

$$= x^4 + x^2 + 1 - 2x^3 - 2x + 2x^2$$

$$= x^4 - 2x^3 + 3x^2 - 2x + 1$$

(3)
$$\left(a - 2b - \frac{1}{2}c\right)\left(a + 2b + \frac{1}{2}c\right)$$

$$= \left\{a - \left(2b + \frac{1}{2}c\right)\right\}\left\{a + \left(2b + \frac{1}{2}c\right)\right\}$$

$$= a^2 - \left(2b + \frac{1}{2}c\right)^2$$

$$= a^2 - \left(4b^2 + 2bc + \frac{1}{4}c^2\right)$$

$$= a^2 - 4b^2 - \frac{1}{4}c^2 - 2bc$$

$$(4) \quad (x-1)(x-2)(x+3)(x+6)$$

$$= \{(x-1)(x+6)\}\{(x-2)(x+3)\}$$

$$= (x^2+5x-6)(x^2+x-6)$$

$$= \{(x^2-6)+5x\}\{(x^2-6)+x\}$$

$$= (x^2-6)^2+6x(x^2-6)+5x^2$$

$$= x^4-12x^2+36+6x^3-36x+5x^2$$

$$= x^4+6x^3-7x^2-36x+36$$

4 次の式を因数分解せよ。

(1)
$$4x^3 - 18x^2 - 10x$$

$$=2x(2x^2-9x-5)$$

$$=2x(2x+1)(x-5)$$

(2)
$$8a^2 - 2ab - 3b^2$$

$$= (2a+b)(4a-3b)$$

(3)
$$(x-3)^2 + 3 - x$$

$$=(x-3)^2-(x-3)$$

$$= (x-3)\{(x-3)-1\}$$

$$= (x-3)(x-4)$$

(4)
$$(x-y)^2 - (2x-y)^2$$

= $\{(x-y) + (2x-y)\}\{(x-y) - (2x-y)\}$

$$=(3x-2y)(-x)$$

$$=-x(3x-2y)$$

(5)
$$4ab^2 - a + 2b - 1$$

 $= (4b^2 - 1)a + (2b - 1)$
 $= (2b + 1)(2b - 1)a + (2b - 1)$
 $= (2b - 1)\{(2b + 1)a + 1\}$
 $= (2b - 1)(2ab + a + 1)$

(6)
$$x^2 - (a-1)x - a$$

 $= x^2 - ax + x - a$
 $= -(x+1)a + (x^2 + x)$
 $= -(x+1)a + x(x+1)$
 $= (x+1)(x-a)$

$$(7) \quad 6x^{2} + 7xy + 2y^{2} - x - y - 1$$

$$= 6x^{2} + (7y - 1)x + (2y^{2} - y - 1)$$

$$= 6x^{2} + (7y - 1)x + (y - 1)(2y + 1)$$

$$= \{3x + (2y + 1)\}\{2x + (y - 1)\}$$

$$= (3x + 2y + 1)(2x + y - 1)$$

$$\stackrel{3}{>} 2y + 1 \longrightarrow 4y + 2$$

$$\stackrel{2}{>} y - 1 \longrightarrow \frac{3y - 3}{7y - 1}$$

(8)
$$a^3 - ab^2 + b^2c - a^2c$$

 $= a(a^2 - b^2) - (a^2 - b^2)c$
 $= (a^2 - b^2)(a - c)$
 $= (a + b)(a - b)(a - c)$

参考

複2次式の因数分解

(教科書 p.20)

xについての整式が

$$ax^4 + bx^2 + c$$

....(1)

の形に表されるとき, ①を(1 複2次式)という。

例 1 複 2 次式 $x^4 + x^2 - 2$ を因数分解してみよう。

問1 次の式を因数分解せよ。

(1)
$$x^4 - 13x^2 + 36$$

 $x^2 = X \succeq 5 < \succeq$
 $x^4 - 13x^2 + 36$
 $= X^2 - 13X + 36$
 $= (X - 4)(X - 9)$
 $= (x^2 - 4)(x^2 - 9)$
 $= (x + 2)(x - 2)(x + 3)(x - 3)$

例 2 (1) $x^4 + 3x^2 + 4 = (x^4 + 4x^2 + 4) - x^2 = (x^2 + 2)^2 - x^2$ = $\{(x^2 + 2) + x\}\{(x^2 + 2) - x\}$ = $(x^2 + x + 2)(x^2 - x + 2)$

(2)
$$4x^4 - 8x^2 + 1 = (4x^4 - 4x^2 + 1) - 4x^2$$
$$= (2x^2 - 1)^2 - (2x)^2$$
$$= \{(2x^2 - 1) + 2x\}\{(2x^2 - 1) - 2x\}$$
$$= (2x^2 + 2x - 1)(2x^2 - 2x - 1)$$

問2 次の式を因数分解せよ。

(1)
$$x^4 + x^2 + 1$$

= $(x^4 + 2x^2 + 1) - x^2$
= $(x^2 + 1)^2 - x^2$
= $\{(x^2 + 1) + x\}\{(x^2 + 1) - x\}$
= $(x^2 + x + 1)(x^2 - x + 1)$

(2)
$$9x^4 - 7x^2 + 1$$

 $= (9x^4 - 6x^2 + 1) - x^2$
 $= (3x^2 - 1)^2 - x^2$
 $= \{(3x^2 - 1) + x\}\{(3x^2 - 1) - x\}$
 $= (3x^2 + x - 1)(3x^2 - x - 1)$

発展

3次式の乗法公式と因数分解

(教科書 p.21)

3次式の乗法公式

$$\boxed{1} \quad (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

<u>問1</u> 上の公式 [1], [2] が成り立つことを確かめよ。

1
$$(a + b)^3 = (a + b)^2(a + b)$$

$$= (a^2 + 2ab + b^2)(a + b)$$

$$= (a^2 + 2ab + b^2)a + (a^2 + 2ab + b^2)b$$

$$= a^3 + 2a^2b + ab^2 + a^2b + 2ab^2 + b^3$$

$$= a^3 + 3a^2b + 3ab^2 + b^3$$

$$(a-b)^3 = (a-b)^2(a-b)$$

$$= (a^2 - 2ab + b^2)(a-b)$$

$$= (a^2 - 2ab + b^2)a - (a^2 - 2ab + b^2)b$$

$$= a^3 - 2a^2b + ab^2 - a^2b + 2ab^2 - b^3$$

$$= a^3 - 3a^2b + 3ab^2 - b^3$$

(2)
$$(3x - 2y)^3 = (3x)^3 - 3 \cdot (3x)^2 \cdot 2y + 3 \cdot 3x \cdot (2y)^2 - (2y)^3$$

= $27x^3 - 54x^2y + 36xy^2 - 8y^3$

----問2 次の式を展開せよ。

(1)
$$(x+1)^3$$

= $x^3 + 3 \cdot x^2 \cdot 1 + 3 \cdot x \cdot 1^2 + 1^3$
= $x^3 + 3x^2 + 3x + 1$

(2)
$$(2x - y)^3$$

= $(2x)^3 - 3 \cdot (2x)^2 \cdot y + 3 \cdot 2x \cdot y^2 - y^3$
= $8x^3 - 12x^2y + 6xy^2 - y^3$

3次式の因数分解の公式

$$3$$
 $a^3 + b^3 = (a+b)(a^2 - ab + b^2)$

$$\boxed{4} \quad a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

問3 上の公式 3, 4 が成り立つことを、右辺を展開することにより確かめよ。

$$(a+b)(a^2 - ab + b^2)$$

$$= a(a^2 - ab + b^2) + b(a^2 - ab + b^2)$$

$$= a^3 - a^2b + ab^2 + a^2b - ab^2 + b^3$$

$$= a^3 + b^3$$

$$(a-b)(a^2 + ab + b^2)$$

$$= a(a^2 + ab + b^2) - b(a^2 + ab + b^2)$$

$$= a^3 + a^2b + ab^2 - a^2b - ab^2 - b^3$$

$$= a^3 - b^3$$

例 2 (1)
$$x^3 + 8 = x^3 + 2^3 = (x+2)(x^2 - x \cdot 2 + 2^2)$$

= $(x+2)(x^2 - 2x + 4)$

(2)
$$27x^3 - 8y^3 = (3x)^3 - (2y)^3 = (3x - 2y)\{(3x)^2 + 3x \cdot 2y + (2y)^2\}$$

= $(3x - 2y)(9x^2 + 6xy + 4y^2)$

$$(1) \quad x^3 + 125$$

$$= x^3 + 5^3$$

$$= (x+5)(x^2 - x \cdot 5 + 5^2)$$
$$= (x+5)(x^2 - 5x + 25)$$

(2)
$$64x^3 - 27y^3$$

$$= (4x)^3 - (3y)^3$$

$$= (4x - 3y)\{(4x)^2 + 4x \cdot 3y + (3y)^2\}$$

$$= (4x - 3y)(16x^2 + 12xy + 9y^2)$$