2節 導関数の応用

1 関数の増加・減少

(教科書 p.137)

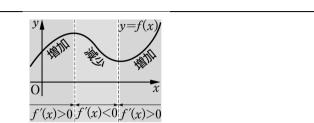
(教科書 p.138)

増加

一般に、関数 f(x) の増減は、f'(x) の値の符号から判断できる。

增加•減少

- f'(x) > 0 となる x の範囲で,
 - f(x) は増加する。
- f'(x) < 0 となる x の範囲で,
 - **f**(x)は**減少**する。



減少

增減表

関数 $f(x) = x^2 - 2x$ の増減を調べてみよう。

 $f(x) = x^2 - 2x$ を微分すると

$$f'(x) = 2x - 2 = 2(x - 1)$$

f'(x) = 0 となる x の値は

x = 1

また, x < 1 のとき f'(x) < 0

x > 1 のとき f'(x) > 0

である。 よって, 関数 $f(x) = x^2 - 2x$ は x < 1 で減少し, x > 1 で増加する。

上の関数 f(x) の増加・減少のようすを表に表すと、次のようになる。

このような表を

) といい,

x	•••	1	
f'(x)	-	0	+
f(x)	/	-1	7

■増減表は, f'(x) = 0 と なる*x*を境にしてつくる。

 $y = x^2 - 2x$

 $f(1) = 1^2 - 2 \times 1 = -1$

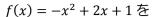
(1)

表の中の記号 1は(²

) を,

ゝは (³

減少)を表す。



例1 微分すると

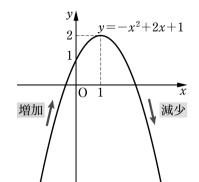
$$f'(x) =$$

$$f'(x) = 0$$
の解は

f(x) の増減表は、 次のようになる。

х			•••
f'(x)	+	0	-
f(x)			

よって, *x* < 1 で (



◀ 増減の調べ方

- ① f'(x) を求める。
- ② f'(x) = 0 を解く。
- ③ 増減表をつくる。
- ④ f'(x) > 0 の範囲で 増加

f'(x) < 0 の範囲で 減少

) \cup , x > 1 \overline{C} (

) する。

問1 次の関数の増減を調べなさい。

(1) $f(x) = x^2 - 4x$

) (**)	••		
x	•••		•••
f'(x)		0	
f(x)			

(2)
$$f(x) = -2x^2 - 4x - 1$$

) (1) -	, 1	λ .	
x	•••		•••
f'(x)		0	
f(x)			

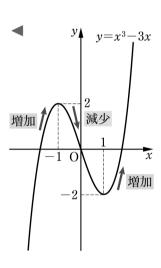
問2 次の関数の増減を調べなさい。

$$(1) \quad f(x) = x^3 - 12x$$

,	(,,,	••			
	х				
j	f'(x)		0	0	
j	f(x)				

関数 $f(x) = x^3 - 3x$ の増減を調べなさい。

解



(2)
$$f(x) = -2x^3 + 6x - 1$$

) (20)	 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,,		
x				•••
f'(x)	0		0	
f(x)				

2 関数の極大・極小

(教科書 p.140)

139 ページの例題 1 の関数 $f(x) = x^3 - 3x$ の増減表は、次のようであった。

x	•••	-1		1	•••
f'(x)	+	0	-	0	+
f(x)	7	2	7	-2	7

関数 f(x) は,x = -1 を境にして増加から減少に変わる。このとき

f(x) | dx = -1| (-1) | (-1)

) になるといい.

f(-1) = 2を(^⑤

) という。

また、関数 f(x) は、x = 1 を境にして減少から増加に変わる。このとき

f(x) は x = 1 において (6

) になるといい.

f(1) = -2を($^{\circ}$) という。

さらに、極大値と極小値を合わせて、(®

) という。

関数 f(x) が x = a で極値をとるとき, x = a を境にして f(x) の増減が入れかわり, f'(x) の符号が 変わるから f'(a) = 0 となる。

したがって、極値を求めるには、まず

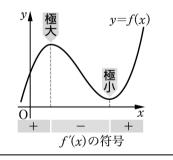
f'(x) = 0 となる x の値

を求め、さらにその値の前後における f'(x) の符号を調べればよい。

極大值•極小值

f'(a) = 0 となる x = a を境にして

f'(x) が正から負に変われば、f(a) は極大値 f'(x) が**負から正**に変われば、f(a) は**極小値**



例2 関数 $f(x) = -2x^2 + 4x$ の極値を求めてみよう。

$$f'(x) =$$

f'(x) = 0の解は

f(x) の増減表は、次のようになる。

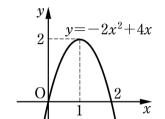
x		
f'(x)	0	
f(x)		

よって、この関数は

x = 0 ≥ 5 ~ 5 ~ 5

間3 次の関数の極値を求めなさい。

 $(1) \quad f(x) = x^2 - 1$



◀ 極値の求め方

- ① *f*′(*x*) を求める。
- ② f'(x) = 0 を解く。
- ③ 増減表をつくる。
- ④ f'(x) が

--→+ 極小

(2)
$$f(x) = -x^2 + 6x + 3$$

間4 次の関数の極値を求めなさい。

$$(1) \quad f(x) = 2x^3 - 6x - 1$$

例3 関数 $f(x) = x^3 - 3x^2 + 2$ の極値を求めてみよう。

$$f'(x) =$$

f'(x) = 0の解は

f(x) の増減表は、次のようになる。

х	•••		•••		•••
f'(x)		0		0	
f(x)					

よって、この関数は

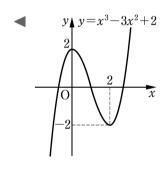
		_
v	_	(
л.	_	(

-) のとき (
-) になり,

(

-)
- x = () のとき (
-) になり,

(



(2) $f(x) = -x^3 - 3x^2 + 1$

関数のグラフ

例題 関数 $y = -x^3 + 3x + 1$ の極値を求め、グラフをかきなさい。 **2**

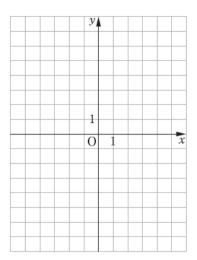
解

(教科書 p.142)

問5 次の関数の極値を求め、グラフをかきなさい。

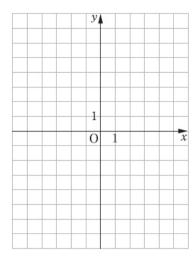
$$(1) \quad y = x^3 - 3x - 2$$

,	,,,	0,0	_		
х	•••		•••		•••
<i>y</i> ′		0		0	
у					



$$(2) \quad y = -2x^3 + 3x^2 - 1$$

	7						
x	•••				•••		
<i>y</i> ′		0		0			
у							



3 関数の最大・最小

(教科書 p.143)

3

例題 次の関数の最大値と最小値を求めなさい。 $y = x^3 - 3x^2 + 1 \ (-2 \le x \le 3)$

解

■ $(-2 \le x \le 3)$ は、この 関数の定義域が $-2 \le x \le 3$ であること を表す。

例題3のように,極小値が(⁹)になるとはかぎらない。 同様に,極大値が(⑩) になるとはかぎらない。

間6 次の関数の最大値と最小値を求めなさい。

(1)
$$y = x^3 + 3x^2 - 2 \ (-2 \le x \le 2)$$

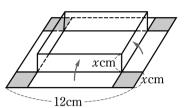
(2)
$$y = x^3 - 3x^2 - 9x \ (-3 \le x \le 2)$$

(3) $y = -x^3 + 12x \ (-1 \le x \le 3)$

(教科書 p.144)

4

例題 1 辺が 12cm の正方形の紙がある。いま、この4 隅から 1 辺が xcm の同じ大きさの正方形を切り取り、その残り を折り曲げてふたのない高さxcmの直方体の箱を作る。 この箱の容積を最大にするには、 x の値をいくらに すればよいか求めなさい。



解

 $\blacktriangleleft x > 0$, 12 - 2x > 0 より 0 < x < 6

問7 例題 4 のように、1 辺が 6cm の正方形の紙の 4 隅から1 辺が xcm の正方形を切り取り、高さxcm の直方体の箱を作る。この箱の容積を最大にするには、x の値をいくらにすればよいか求めなさい。

復習問題

(教科書 p.145)

- 2 次の関数の極値を求めなさい。
 - $(1) \quad f(x) = x^3 + 3x^2 9x$

- 1 次の関数の増減を調べなさい。
 - $(1) \quad f(x) = x^2 8x + 1$

(2) $f(x) = x^3 + 3x^2 + 2$

(2)
$$f(x) = -x^3 + 12x + 16$$

3 次の関数の極値を求め、グラフをかきなさい。

$$(1) \quad y = 2x^3 - 3x^2 + 2$$

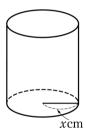
$$(2) \quad y = -x^3 + 6x^2 - 9x$$

(3)
$$y = -2x^3 + 6x + 1$$

- 4 次の関数の最大値と最小値を求めなさい。
 - (1) $y = x^3 3x 3 \quad (-2 \le x \le 3)$

(2) $y = -x^3 + 6x^2$ $(-1 \le x \le 2)$

- 5 底面の半径と高さの和が12cmの円柱がある。この円柱について、次の問に答えなさい。
 - (1) 底面の半径をxcm とするとき,円柱の高さをxで表しなさい。
 - (2) 円柱の体積をycm 3 とするとき、yをxで表しなさい。



(3) 円柱の体積 y の最大値を求めなさい。

2節 導関数の応用

1 関数の増加・減少

(教科書 p.137)

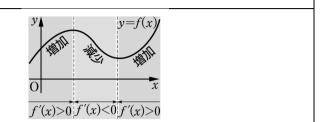
(教科書 p.138)

増加

一般に、関数 f(x) の増減は、f'(x) の値の符号から判断できる。

增加•減少

- f'(x) > 0 となる x の範囲で、
 - **f**(x) は**増加**する。
- f'(x) < 0 となる x の範囲で、
 - **f**(x)は**減少**する。



減少

增減表

関数 $f(x) = x^2 - 2x$ の増減を調べてみよう。

 $f(x) = x^2 - 2x$ を微分すると

f'(x) = 2x - 2 = 2(x - 1)

f'(x) = 0 となる x の値は

x = 1

また, x < 1 のとき f'(x) < 0

x > 1 のとき f'(x) > 0

である。

よって, 関数 $f(x) = x^2 - 2x$ は x < 1 で減少し, x > 1 で増加する。

上の関数 f(x) の増加・減少のようすを表に表すと、次のようになる。

このような表を

ノは(² 増加)を,

減少)を表す。

 $|f(x)| \leq |-1|$

■増減表は, f'(x) = 0 と

 $y = x^2 - 2x$

 $f(1) = 1^2 - 2 \times 1 = -1$

表の中の記号

ゝは (³

(1) 増減表) といい,

х		1	
f'(x)	_	0	
$f(\gamma)$	\	_1	

なる*x*を境にしてつくる。

 $f(x) = -x^2 + 2x + 1 \,$

例1 微分すると

$$f'(x) = -2x + 2$$
$$= -2(x - 1)$$

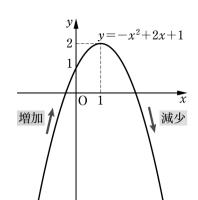
$$f'(x) = 0$$
の解は

x = 1

f(x) の増減表は、

次のようになる。

x		1	
f'(x)	+	0	_
f(x)	7	2	7



◀ 増減の調べ方

- ① f'(x) を求める。
- ② f'(x) = 0 を解く。
- ③ 増減表をつくる。
- ④ f'(x) > 0 の範囲で 増加

f'(x) < 0 の範囲で 減少

よって, *x* < 1 で (増加) し, x > 1 で (<u>減少</u>) する。

問1 次の関数の増減を調べなさい。

(1)
$$f(x) = x^2 - 4x$$

, , ,		
x		•••
f'(x)	0	
f(x)		

$$f'(x) = 2x - 4 = 2(x - 2)$$

$$f'(x) = 0$$
 の解は $x = 2$

$$f'(x) = 0$$
 のときの $f(x)$ の値は

$$f(2) = 2^2 - 4 \times 2 = -4$$

f(x) の増減表は、次のようになる。

x	•••	2	•••
f'(x)	_	0	+
f(x)	7	-4	7

よって、x < 2で減少し、x > 2で増加する。

(2)
$$f(x) = -2x^2 - 4x - 1$$

, ()			
x	•••		
f'(x)		0	
f(x)			

$$f'(x) = -4x - 4 = -4(x+1)$$

$$f'(x) = 0$$
 の解は $x = -1$

$$f'(x) = 0$$
 のときの $f(x)$ の値は

$$f(-1) = -2 \times (-1)^2 - 4 \times (-1) - 1$$

=

f(x) の増減表は、次のようになる。

x	1		•••
f'(x)	+	0	_
f(x)	7	1	7

よって, x < -1 で増加し, x > -1 で減少する。

例題 1

関数 $f(x) = x^3 - 3x$ の増減を調べなさい。

$f'(x) = 3x^2 - 3 = 3(x+1)(x-1)$

f'(x) = 0の解は

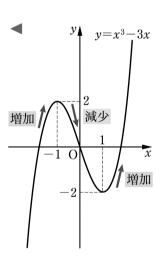
x = -1, 1

f(x) の増減表は、次のようになる。

x		-1		1	
f'(x)	+	0	_	0	+
f(x)	7	2	٧	-2	7

よって, x < -1, 1 < x で増加し,

-1 < x < 1 で減少する。



問2 次の関数の増減を調べなさい。

(1)
$$f(x) = x^3 - 12x$$

x			
f'(x)	0	0	
f(x)			

$$f'(x) = 3x^2 - 12 = 3(x+2)(x-2)$$

$$f'(x) = 0$$
 の解は $x = -2, 2$

$$f'(x) = 0$$
 のときの $f(x)$ の値は

$$f(-2) = (-2)^3 - 12 \times (-2) = 16$$

$$f(2) = 2^3 - 12 \times 2 = -16$$

f(x) の増減表は、次のようになる。

х		-2		2	
f'(x)	+	0	_	0	+
f(x)	7	16	7	-16	7

よって, x < -2, 2 < x で増加し, -2 < x < 2 で減少する。

(2) $f(x) = -2x^3 + 6x - 1$

x	•••		•••		•••
f'(x)		0		0	
f(x)					

$$f'(x) = -6x^2 + 6 = -6(x+1)(x-1)$$

$$f'(x) = 0$$
 の解は $x = -1$, 1

$$f'(x) = 0$$
 のときの $f(x)$ の値は

$$f(-1) = -2 \times (-1)^3 + 6 \times (-1) - 1 = -5$$

$$f(1) = -2 \times 1^3 + 6 \times 1 - 1 = 3$$

f(x) の増減表は、次のようになる。

x		-1	•••	1	
f'(x)	_	0	+	0	-
f(x)	7	-5	7	3	7

よって、
$$x < -1$$
、 $1 < x$ で減少し、

-1 < x < 1 で増加する。

2 関数の極大・極小

(教科書 p.140)

139 ページの例題 1 の関数 $f(x) = x^3 - 3x$ の増減表は、次のようであった。

x		-1		1	•••
f'(x)	+	0	-	0	+
f(x)	7	2	7	-2	7

関数 f(x) は、x = -1 を境にして増加から減少に変わる。このとき

f(x) は x = -1 において ($^{\textcircled{4}}$ 極大) になるといい、

 $f(-1) = 2 \, \text{を} \, (^{\$})$ 極大値)という。

また、関数 f(x) は、x=1 を境にして減少から増加に変わる。このとき

f(x) は x = 1 において (® 極小) になるといい,

f(1) = -2 を ($^{\circ}$ 極小値) という。

さらに、極大値と極小値を合わせて、([®] 極値)という。

関数 f(x) が x=a で極値をとるとき, x=a を境にして f(x) の増減が入れかわり, f'(x) の符号が 変わるから f'(a)=0 となる。

したがって、極値を求めるには、まず

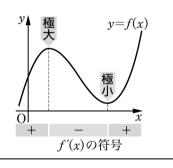
f'(x) = 0 となる x の値

を求め、さらにその値の前後における f'(x) の符号を調べればよい。

極大值•極小值

f'(a) = 0 となる x = a を境にして

f'(x) が正から負に変われば、f(a) は極大値 f'(x) が負から正に変われば、f(a) は極小値



例2 関数 $f(x) = -2x^2 + 4x$ の極値を求めてみよう。

$$f'(x) = -4x + 4 = -4(x - 1)$$

- f'(x) = 0 の解は x = 1
- f(x) の増減表は、次のようになる。

x		1	•••
f'(x)	+	0	1
f(x)	7	極大 2	1

よって、この関数は

x = 1 のとき極大になり、極大値は 2

◀ 極値の求め方

- ① f'(x) を求める。
- ② f'(x) = 0 を解く。
- ③ 増減表をつくる。
- (4) f'(x))
 - +→- 極大 -→+ 極小

2	y=	=-2z	$x^2 + x^2$	4x
O			.2	
	1	1		\overline{x}

 \mathcal{Y}

問3 次の関数の極値を求めなさい。

$$(1) \quad f(x) = x^2 - 1$$

$$f'(x) = 2x$$

$$f'(x) = 0$$
 の解は $x = 0$

$$f'(x) = 0$$
 のときの $f(x)$ の値は

$$f(0) = 0^2 - 1 = -1$$

f(x) の増減表は、次のようになる。

)	C		0	
f'((x)	_	0	+
f((x)	٧	極小 -1	7

よって、この関数は

x=0 のとき極小になり、極小値は-1

(2)
$$f(x) = -x^2 + 6x + 3$$

$$f'(x) = -2x + 6 = -2(x - 3)$$

$$f'(x) = 0$$
 の解は $x = 3$

$$f'(x) = 0$$
 のときの $f(x)$ の値は

$$f(3) = -3^2 + 6 \times 3 + 3 = 12$$

f(x) の増減表は、次のようになる。

х		3	
f'(x)	+	0	_
f(x)	7	極大 12	7

よって, この関数は

x = 3 のとき極大になり、極大値は12

例3 関数 $f(x) = x^3 - 3x^2 + 2$ の極値を求めてみよう。

$$f'(x) = 3x^2 - 6x = 3x(x - 2)$$

$$f'(x) = 0$$
 の解は $x = 0, 2$

f(x) の増減表は、次のようになる。

x		0		2	•••
f'(x)	+	0	_	0	+
f(x)	7	極大 2	7	極小 -2	7

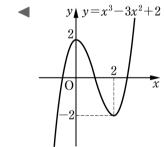
よって、この関数は

$$x = (0)$$
)のとき (極大)になり、

(極大値は2)

$$x = ($$
2)のとき(極小)になり、

(極小値は -2)



間4 次の関数の極値を求めなさい。

(1)
$$f(x) = 2x^3 - 6x - 1$$

$$f'(x) = 6x^2 - 6 = 6(x+1)(x-1)$$

$$f'(x) = 0$$
 の解は $x = -1, 1$

$$f'(x) = 0$$
 のときの $f(x)$ の値は

$$f(-1) = 2 \times (-1)^3 - 6 \times (-1) - 1$$
$$= 3$$

$$f(1) = 2 \times 1^3 - 6 \times 1 - 1 = -5$$

f(x) の増減表は、次のようになる。

x		-1		1	
f'(x)	+	0	_	0	+
f(x)	7	極大 3	7	極小 -5	7

よって,この関数は

$$x = -1$$
 のとき極大になり、

極大値は3

x = 1 のとき極小になり、

極小値は -5

(2)
$$f(x) = -x^3 - 3x^2 + 1$$

$$f'(x) = -3x^2 - 6x = -3x(x+2)$$

$$f'(x) = 0$$
 の解は $x = -2, 0$

$$f'(x) = 0$$
 のときの $f(x)$ の値は

$$f(-2) = -(-2)^3 - 3 \times (-2)^2 + 1$$
$$= -3$$

$$f(0) = -0^3 - 3 \times 0^2 + 1 = 1$$

f(x) の増減表は、次のようになる。

x		-2		0	•••
f'(x)	_	0	+	0	_
f(x)	٧	極小 -3	7	極大 1	7

よって、この関数は

$$x=0$$
 のとき極大になり、

極大値は1

$$x = -2$$
 のとき極小になり、

(教科書 p.142)

関数のグラフ

例題 関数 $y = -x^3 + 3x + 1$ の極値を求め、グラフをかきなさい。

$$\mathbf{M} \qquad y' = -3x^2 + 3 = -3(x+1)(x-1)$$

y' = 0 の解は x = -1, 1

yの増減表は,次のようになる。

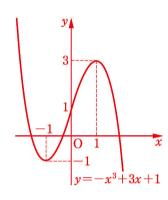
x		-1		1	
y'	_	0	+	0	-
у	٧	極小 -1	7	極大 3	K

よって、この関数は

x=1 のとき 極大値 3

x = -1 のとき 極小値 -1

をとる。また、x = 0 のとき y = 1 である。 したがって、グラフは右の図のようになる。



問5 次の関数の極値を求め、グラフをかきなさい。

$$(1) \quad v = x^3 - 3x - 2$$

x			
<i>y</i> ′	0	0	
у			

$$y' = 3x^2 - 3 = 3(x+1)(x-1)$$

$$y' = 0$$
 の解は $x = -1, 1$

$$x = -1$$
 のとき

$$y = (-1)^3 - 3 \times (-1) - 2 = 0$$

$$x = 1$$
 のとき

$$y = 1^3 - 3 \times 1 - 2$$

$$= -4$$

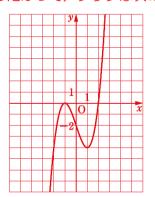
yの増減表は、次のようになる。

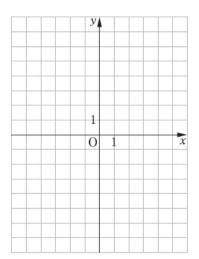
x		-1		1	•••
y'	+	0	_	0	+
у	7	極大 0	٧	極小 -4	7

よって、この関数は

$$x = -1$$
 のとき 極大値 0

をとる。また、x = 0 のとき y = -2 である。 したがって、グラフは次の図のようになる。





$$(2) \quad y = -2x^3 + 3x^2 - 1$$

х	•••			
<i>y</i> ′		0	0	
у				

$$y' = -6x^2 + 6x = -6x(x-1)$$

y' = 0 の解は x = 0, 1

x = 0 のとき

$$y = -2 \times 0^3 + 3 \times 0^2 - 1$$

= -1

x = 1 のとき

$$y = -2 \times 1^3 + 3 \times 1^2 - 1$$

= 0

yの増減表は、次のようになる。

х		0		1	•••
y'	_	0	+	0	-
у	٧	極小 -1	7	極大 0	7

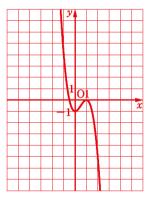
よって、この関数は

x = 1 のとき 極大値 0

x = 0 のとき 極小値 -1

をとる。

したがって、グラフは次の図のようになる。



3 関数の最大・最小

(教科書 p.143)

3

例題 次の関数の最大値と最小値を求めなさい。

 $y = x^3 - 3x^2 + 1 \ (-2 \le x \le 3)$

 $y' = 3x^2 - 6x = 3x(x-2)$

y' = 0 の解は x = 0, 2

 $-2 \le x \le 3$ における y の増減表は、次のようになる。

x	-2		0		2		3
y'		+	0	-	0	+	
у	-19	7	極大 1	٧	極小 -3	7	1

よって, この関数の最大値と最小値は

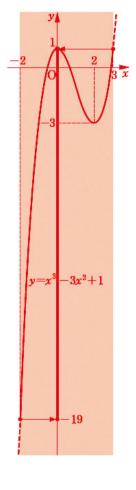
x = 0.3のとき 最大値 1

x = -2 のとき 最小値 -19

例題3のように、極小値が(⁹ 最小値)になるとはかぎらない。

同様に、極大値が(⑩ 最大値)になるとはかぎらない。

 $(-2 \le x \le 3)$ は. この 関数の定義域が $-2 \le x \le 3$ であること を表す。



問6 次の関数の最大値と最小値を求めなさい。

(1)
$$y = x^3 + 3x^2 - 2 \ (-2 \le x \le 2)$$

$$y' = 3x^2 + 6x = 3x(x+2)$$

$$y' = 0$$
 の解は $x = -2, 0$

$$y = (-2)^3 + 3 \times (-2)^2 - 2 = 2$$

x = 0 のとき

$$y = 0^3 + 3 \times 0^2 - 2 = -2$$

x = 2 のとき

$$v = 2^3 + 3 \times 2^2 - 2 = 18$$

 $-2 \le x \le 2$ における y の増減表は、次のようになる。

x	-2		0		2
<i>y</i> ′	0	_	0	+	
у	極大 2	٧	極小 -2	7	18

よって, この関数の最大値と最小値は

x = 2 のとき 最大値 18

x = 0 のとき 最小値 -2

(2)
$$y = x^3 - 3x^2 - 9x \ (-3 \le x \le 2)$$

$$y' = 3x^2 - 6x - 9 = 3(x+1)(x-3)$$

$$y' = 0$$
 の解は $x = -1$, 3

$$y = (-3)^3 - 3 \times (-3)^2 - 9 \times (-3)$$

$$= -27$$

x = -1 のとき

$$y = (-1)^3 - 3 \times (-1)^2 - 9 \times (-1)$$

x = 2 のとき

$$y = 2^3 - 3 \times 2^2 - 9 \times 2 = -22$$

$-3 \le x \le 2$ における y の増減表は、次のようになる。

х	-3		-1		2
<i>y</i> ′		+	0	_	
у	-27	7	極大 5	٧	-22

よって, この関数の最大値と最小値は

$$x = -1$$
 のとき 最大値 5

(3)
$$y = -x^3 + 12x \ (-1 \le x \le 3)$$

$$y' = -3x^2 + 12 = -3(x+2)(x-2)$$

$$y' = 0$$
 の解は $x = -2, 2$

$$x = -1$$
 のとき

$$y = -(-1)^3 + 12 \times (-1) = -11$$

x = 2 のとき

$$y = -2^3 + 12 \times 2 = 16$$

x = 3 のとき

$$y = -3^3 + 12 \times 3 = 9$$

 $-1 \le x \le 3$ における y の増減表は、次のようになる。

x	-1		2		3
y'		+	0	_	
y	-11	7	極大 16	٧	9

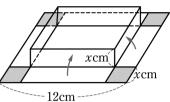
よって, この関数の最大値と最小値は

$$x = -1$$
 のとき 最小値 -11

関数の最大・最小の利用

(教科書 p.144)

1 辺が 12cm の正方形の紙がある。いま, この4 隅から 1 辺が xcm の同じ大きさの正方形を切り取り、その残り を折り曲げてふたのない高さxcmの直方体の箱を作る。 この箱の容積を最大にするには、 x の値をいくらに すればよいか求めなさい。



解 箱の底面の1辺は(12-2x)cm, 高さはxcmである。

0 < x < 6 ······(1)

$$y = x(12 - 2x)^{2}$$
$$= 4x^{3} - 48x^{2} + 144x$$
$$y' = 12x^{2} - 96x + 144$$

$$= 12(x^2 - 8x + 12)$$

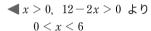
$$= 12(x-2)(x-6)$$

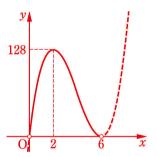
$$y' = 0$$
 の解は $x = 2, 6$

①の範囲で v の増減表は、次のようになる。

	/		* /		
x	0		2		6
y'		+	0	_	
у		7	極大 128	٧	

よって、容積を最大にするには、x = 2とすればよい。





問7 例題 4 のように、1 辺が 6cm の正方形の紙の 4 隅から1 辺が xcm の正方形を切り取り、高さxcm の直方体の箱を作る。この箱の容積を最大にするには、x の値をいくらにすればよいか求めなさい。

箱の底面の 1 辺は (6-2x) cm, 高さは x cm である。 これらは正であるから

$$0 < x < 3$$
 ······(1)

箱の容積を y cm³ とすると

$$y = x(6 - 2x)^2 = 4x^3 - 24x^2 + 36x$$
$$y' = 12x^2 - 48x + 36$$

$$= 12(x^2 - 4x + 3)$$

$$= 12(x-1)(x-3)$$

$$y' = 0$$
 の解は $x = 1, 3$

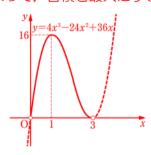
x = 1 のとき

$$y = 4 \times 1^3 - 24 \times 1^2 + 36 \times 1 = 16$$

①の範囲でyの増減表は、次のようになる。

2	ĸ	0		1		3
J	, '		+	0	_	
)	V		7	極大 16	Ŋ	

よって、容積を最大にするには、x = 1とすればよい。



復習問題

(教科書 p.145)

- 1 次の関数の増減を調べなさい。
 - $(1) \quad f(x) = x^2 8x + 1$

$$f'(x) = 2x - 8 = 2(x - 4)$$

f'(x) = 0 の解は x = 4

f'(x) = 0 のときの f(x) の値は

 $f(4) = 4^2 - 8 \times 4 + 1 = -15$

f(x) の増減表は、次のようになる。

x		4	
f'(x)	_	0	+
f(x)	7	-15	7

よって,x < 4で減少し,

x > 4 で増加する。

(2) $f(x) = x^3 + 3x^2 + 2$

$$f'(x) = 3x^2 + 6x = 3x(x+2)$$

$$f'(x) = 0$$
 の解は $x = -2$, 0

$$f'(x) = 0$$
 のときの $f(x)$ の値は

$$f(-2) = (-2)^3 + 3 \times (-2)^2 + 2 = 6$$

$$f(0) = 0^3 + 3 \times 0^2 + 2 = 2$$

f(x) の増減表は、次のようになる。

х		-2		0	
f'(x)	+	0	_	0	+
f(x)	7	6	7	2	7

よって, x < -2, 0 < x で増加し,

-2 < x < 0 で減少する。

2 次の関数の極値を求めなさい。

$$(1) \quad f(x) = x^3 + 3x^2 - 9x$$

$$f'(x) = 3x^2 + 6x - 9$$
$$= 3(x+3)(x-1)$$

$$f'(x) = 0$$
 の解は $x = -3$, 1

$$f'(x) = 0$$
 のときの $f(x)$ の値は

$$f(-3) = (-3)^3 + 3 \times (-3)^2 - 9 \times (-3)$$
$$= 27$$

$$f(1) = 1^3 + 3 \times 1^2 - 9 \times 1 = -5$$

f(x) の増減表は、次のようになる。

· /	(1) 1218/1/2013 7 (12013 12 01 30							
x		-3		1				
f'(x)	+	0	_	0	+			
f(x)	7	極大 27	V	極小 5	7			

よって, この関数は

$$x = -3$$
 のとき極大になり、

極大値は27

$$x = 1$$
 のとき極小になり、

極小値は -5

(2)
$$f(x) = -x^3 + 12x + 16$$

$$f'(x) = -3x^2 + 12$$
$$= -3(x+2)(x-2)$$

$$f'(x) = 0$$
 の解は $x = -2, 2$

$$f'(x) = 0$$
 のときの $f(x)$ の値は

$$f(-2) = -(-2)^3 + 12 \times (-2) + 16$$
$$= 0$$

$$f(2) = -2^3 + 12 \times 2 + 16 = 32$$

f(x) の増減表は、次のようになる。

х		-2		2	
f'(x)	_	0	+	0	_
f(x)	٧	極小 0	7	極大 32	٧

よって、この関数は

x=2 のとき極大になり、

極大値は32

x = -2 のとき極小になり、

極小値は0

3 次の関数の極値を求め、グラフをかきなさい。

$$(1) \quad y = 2x^3 - 3x^2 + 2$$

$$y' = 6x^2 - 6x = 6x(x-1)$$

$$y' = 0$$
 の解は $x = 0, 1$

$$y = 2 \times 0^3 - 3 \times 0^2 + 2 = 2$$

$$x = 1$$
 のとき

$$y = 2 \times 1^3 - 3 \times 1^2 + 2 = 1$$

γ の増減表は、次のようになる。

x		0	•••	1	•••
<i>y</i> ′	+	0	_	0	+
у	7	極大 2	٧	極小 1	7

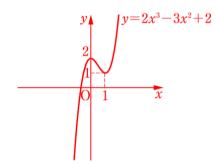
よって、この関数は

$$x=0$$
 のとき 極大値 2

$$x = 1$$
 のとき 極小値 1

をとる。

したがって、グラフは次の図のようになる。



(2)
$$y = -x^3 + 6x^2 - 9x$$

 $y' = -3x^2 + 12x - 9$

$$=-3(x-1)(x-3)$$

y' = 0 の解は x = 1, 3

x = 1 のとき

$$y = -1^3 + 6 \times 1^2 - 9 \times 1 = -4$$

x = 3 のとき

$$y = -3^3 + 6 \times 3^2 - 9 \times 3 = 0$$

yの増減表は、次のようになる。

х		1		3	
y'	-	0	+	0	_
у	٧	極小 -4	7	極大 0	٧

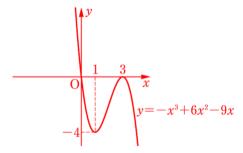
よって、この関数は

x = 3 のとき 極大値 0

x = 1 のとき 極小値 -4

をとる。また、x = 0 のとき y = 0 である。

したがって、グラフは次の図のようになる。



(3)
$$y = -2x^3 + 6x + 1$$

$$y' = -6x^2 + 6 = -6(x+1)(x-1)$$

$$y' = 0$$
 の解は $x = -1, 1$

$$x = -1$$
 のとき

$$y = -2 \times (-1)^3 + 6 \times (-1) + 1$$

$$= -3$$

x = 1 のとき

$$y = -2 \times 1^3 + 6 \times 1 + 1 = 5$$

yの増減表は,次のようになる。

х		-1		1	
y'	_	0	+	0	_
у	٧	極小 -3	7	極大 5	٧

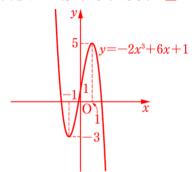
よって、この関数は

x = 1 のとき極大値 5

x = −1 のとき 極小値 −3

をとる。また、x = 0 のときy = 1 である。

したがって、グラフは次の図のようになる。



4 次の関数の最大値と最小値を求めなさい。

(1)
$$y = x^3 - 3x - 3 \quad (-2 \le x \le 3)$$

$$y' = 3x^2 - 3 = 3(x+1)(x-1)$$

$$y' = 0$$
 の解は $x = -1, 1$

x = -2 のとき

$$y = (-2)^3 - 3 \times (-2) - 3 = -5$$

x = -1 のとき

$$y = (-1)^3 - 3 \times (-1) - 3 = -1$$

x = 1 のとき

$$v = 1^3 - 3 \times 1 - 3 = -5$$

x = 3 のとき

$$v = 3^3 - 3 \times 3 - 3 = 15$$

 $-2 \le x \le 3$ における y の増減表は、次のようになる。

x	-2		-1		1		3
y'		+	0	_	0	+	
y	-5	7	極大 -1	7	極小 -5	7	15

よって, この関数の最大値と最小値は

x = 3 のとき 最大値 15

x = -2, 1のとき 最小値 -5

- (2) $y = -x^3 + 6x^2$ $(-1 \le x \le 2)$ $y' = -3x^2 + 12x = -3x(x - 4)$ y' = 0 の解は x = 0, 4 x = -1 のとき $y = -(-1)^3 + 6 \times (-1)^2 = 7$ x = 0 のとき $y = -0^3 + 6 \times 0^2 = 0$ x = 2 のとき $y = -2^3 + 6 \times 2^2 = 16$
 - $-1 \le x \le 2$ における y の増減表は、次のようになる。

x	-1		0		2
y'		_	0	+	
у	7	٧	極小 0	7	16

よって, この関数の最大値と最小値は

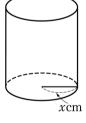
x = 2 のとき 最大値 16

x = 0 のとき 最小値 0

 $y = -\pi x^3 + 12\pi x^2$

13

- 5 底面の半径と高さの和が12cmの円柱がある。この円柱について、次の間に答えなさい。
 - (1) 底面の半径をxcm とするとき,円柱の高さをx で表しなさい。 底面の半径x cm と高さの和が 12 cm であるから,円柱の高さは (12-x) cm
 - (2) 円柱の体積を $y \text{cm}^3$ とするとき、y を x で表しなさい。 (円柱の体積) = (底面積) × (高さ)であるから $y = \pi x^2 (12 x)$ すなわち



(3) 円柱の体積 y の最大値を求めなさい。

底面の半径と高さは正であるから

$$0 < x < 12$$
 ······①

$$y' = -3\pi x^2 + 24\pi x = -3\pi x(x-8)$$

$$y' = 0$$
 の解は $x = 0$, 8

$$y = -\pi \times 8^3 + 12\pi \times 8^2 = 256\pi$$

①の範囲でyの増減表は、次のようになる。

х	0	•••	8		12
<i>y'</i>		+	0	_	
y		7	極大 256π	٧	

よって、円柱の体積yが最大値をとるのはx=8のときで

$$y = 256\pi \, (\mathrm{cm}^3)$$

